Downloaded from www.studiestoday.com

8. Motion

Q 1 Define centripetal force.
Mark (1)

Q 2 When do we say the acceleration of a body is zero?
Mark (1)

Q 3 What is meant by non-uniform acceleration?
Mark (1)

Q 4 What is meant by uniform acceleration?
Mark (1)

Q 5 Define acceleration.
Mark (1)

Q 6 When does the velocity and speed of a moving body become identical?
Mark (1)

Q 7 What is meant by average velocity of a body moving in a particular direction?
Mark (1)

Q 8 When does the velocity change?
Mark (1)

Q 9 Define the term displacement.
Mark (1)

Q 10 Define the term distance.
Mark (1)

Q 11 What is a scalar quantity?
Mark (1)

Q 12 How is the position of an object described?
Mark (1)

Q 13 What is meant by body in motion?
Mark (1)

Q 14 What is meant by body at rest?
Mark (1)

Q 15 Why is uniform linear motion not an accelerated motion?
Mark (1)

Q 16 What is positive acceleration and negative acceleration?

Mark (1)

Q 17 What is meant by non-uniform velocity?
Mark (1)

Q 18 What is meant by uniform velocity?
Mark (1)

Q 19 Define velocity.
Mark (1)

Q 20 Define non-uniform motion.
Mark (1)

Q 21 Define uniform motion.
Mark (1)

Q 22 Define a vector quantity.
Mark (1)

Q 23 What is meant by angular acceleration?
Marks (2)

Q 24 What is meant by angular velocity? Write its SI unit.
Marks (2)

Q 25 Why is the motion of Satellites around their planets considered an accelerated motion?
Marks (2)

Q 26 A racing car has a uniform acceleration of $4 \mathrm{~ms}^{-2}$. What distance will it cover in 10 seconds after the start?
Marks (2)
Q 27 A bus covers a distance of 250 km from Delhi to Jaipur towards West in 5 hours in the morning and returns to Delhi in the evening covering the same distance of 250 km in the same time of 5 hours.
Find
(a) Average speed
(b) Average velocity of the bus for the whole journey.

Marks (2)

Q 28 A car travels a distance of 200 km from Delhi to Ambala towards North in 5 hours.

Calculate

(i) Speed
(ii) Velocity of car for this journey.

Marks (2)

Downloaded from www.studiestoday.com

Q 29 What are equations of motion?
Marks (2)

Q 30 A body thrown vertically upward rises up to a height ' h ', and comes back to the initial position.
Calculate
i) the total distance travelled by the body
ii) the displacement of the body.

> Marks (2)

Q 31 Train A travells a distance of 120 km in 3 hours whereas another train B travells a distance of 180 Km in 4 hours. Which train travells faster.

Marks (2)

Q 32 Draw distance time graph for uniform and non uniform motion.
Marks (2)

Q 33 Convert speed of $72 \mathrm{~km} / \mathrm{hr}$ into
a) m / s
b) cm / s

Marks (2)

Q 34 What are the characteristics of scalar quantities?
Marks (2)

Q 35 A train starting from rest attains a velocity of $72 \mathrm{~km} \mathrm{~h}^{-1}$ in 5 min . Assuming that the acceleration is uniform, find
(i) The acceleration
(ii) The distance travelled by the train for attaining this velocity.

Marks (2)

Q 36 A cyclist goes around a circular track once every 2 minutes. If the radius of the circular track is 105 metres, calculate his speed. (Given $\pi=22 / 7$)

Marks (2)

Q 37 Why is uniform circular motion called accelerated motion?
Marks (2)

Q 38 A scooter moving at a speed of $10 \mathrm{~m} / \mathrm{s}$ is stopped by applying brakes which produce a uniform acceleration of $-0.5 \mathrm{~ms}^{-2}$. How much distance will be covered by the scooter before it stops?

Marks (2)

Q 39 A moving train is brought to rest within 20 sec by applying brakes. Find the initial velocity, if the retardation due to brakes is 2 $\mathrm{m} / \mathrm{s}^{2}$.

Marks (2)

Q 40 A driver changes the speed of car from $25 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 5 seconds. Find the acceleration of the car.
Marks (2)

Downloaded from www.studiestoday.com

Q 41 The average speed of a bicycle, an athlete and a car are $18 \mathrm{~km} / \mathrm{hr}, 7 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~km} / \mathrm{min}$ respectively. Which among these is the fastest and the slowest one?

Marks (2)

Q 42 An aeroplane lands at $432 \mathrm{~km} / \mathrm{hr}$ and stops after covering a runaway of 4 km . Calculate (i) acceleration (ii) time in which it comes to rest.

Marks (2)

Q 43 What are the characteristics of vector quantities?
Marks (2)

Q 44 The brakes applied to a car produced an acceleration of $6 \mathrm{~ms}^{-2}$ in the opposite direction of the motion. If the car takes 2 s to stop after the application of brakes, calculate the distance it travels during this time.

Marks (3)

Q 45 A scooter acquires a velocity of 36 km per hour in 10 seconds just after the start. Calculate the acceleration of the scooter.

> Marks (3)

Q 46 Consider the situation shown in fig. below: The x-axis is in meters
a) What is the position of a particle when it is at P_{1} and when it is at P_{2} ?
b) Are the positions same?
c) Are the two distance of the particle from the origin same?

Marks (3)

Q 47 A car covers 30 km at a uniform speed of $60 \mathrm{~km} / \mathrm{h}$ and the next 30 km at a uniform speed of $40 \mathrm{~km} / \mathrm{h}$. Find the total time taken by the car.

Marks (3)
Q 48 A bus between Vishakhapatnam and Hyderabad passed the $100 \mathrm{~km}, 160 \mathrm{~km}$ and 220 km points at 10.30 a.m., 11.30 a.m. and 1.30. p.m. Find the average speed of the bus.

Marks (3)
Q 49 A man travels a distance of 1.5 m towards East, then 2.0 m towards South and finally 4.5 m towards East.
i) What is the total distance traveled?
ii) What is his total displacement?

Marks (3)
Q 50 Define the following
a) Speed
b) Average speed
c) Uniform speed.

Downloaded from www.studiestoday.com

Q 51 A particle is moving in a circle of radius 1 m . Draw a diagram to show the following positions of the particle
a) 1 m . from the center, 30^{0} North-East
b) 1 m . from the center, 30° West-North
c) 1 m . from the center towards South.

Marks (3)
Q 52 Differentiate between
a) Speed and Average speed
b) Speed and Velocity
c) Uniform linear motion and Uniform circular motion.

Marks (3)

Q 53 How many different types of velocity-time (speed-time) graphs are possible for a straight-line motion?

> Marks (5)

Q 54 Explain using distance - time graphs
a) When the body is at rest
b)When the body is moving with a uniform speed
c)When the body is moving with a non-uniform speed.

Marks (5)

Q 55 A train travels at a speed of $60 \mathrm{~km} / \mathrm{hr}$ for 0.52 hr , at $30 \mathrm{~km} / \mathrm{h}$ for the next 0.24 hr and then at $70 \mathrm{~km} / \mathrm{h}$ for the next 0.71 h . What is the average speed of the train?

Marks (5)

Q 56 Write the mathematical expression \& S.I. units for the following

1. Speed
2. Average speed
3. Velocity
4. Average Velocity
5. Acceleration.

Marks (5)

Q 57 Manav runs from one end X to the other end Y of a straight 200 m road in 2 minutes 30 seconds. Then, he turns back and covers another 80 m to point Z in another 1 minute. Find Manav's average speed and velocities
(a) from X to Y .
(b) \quad from X to Z .

Marks (5)
Q 58 An object starts from rest and is uniformly accelerated so that its speed is $60 \mathrm{~m} / \mathrm{s}$ after 20 s . If it travels with this speed for 40 s and is then brought to rest by a uniform retardation in 30 s . Sketch the velocity-time graph and calculate the acceleration, the retardation and the total distance travelled.

Marks (5)
Q 59 Two trains X and Y are running on parallel tracks with a speed of $72 \mathrm{~km} / \mathrm{h}$ and $54 \mathrm{~km} / \mathrm{h}$ respectively. The driver of train X applies the brake and it comes to a stop in 10seconds. While the driver of train Y applies the brake and the train retards uniformly before coming to rest in 15 seconds. Plot distance-time graphs for both the trains. Also, calculate the distance travelled by each train after the brakes were applied.

> Marks (5)

Q 60 Derive the three equations of motion from the speed-time graph.
Marks (5)

Downloaded from www.studiestoday.com

Most Important Questions

Q 1 We say that displacement can be +ve , -ve or 0 . Give example for each case.

Q 2 A bus is moving in a crowded area. What type of motion does it possess?

Q 3 A body is moving in such a way that in every 10 seconds it covers a distance of 15 m . What do you conclude from the statement?

Q 4 There is a park 3 km away from my home. On a particular day I went to the park with my brother. When we came back my father asked one question each from both of us. My answer was 6 km but that of my brother was 0 km . what do you infer from the description?

Q 5 What do you mean by the term motion?

Q 6 Write any two points to distinguish between uniform and non-uniform velocity.

Q 7 Does uniform motion mean the same as the uniform velocity? Explain.

Q 8 A cyclist goes around a circular track once every 2 minutes. If the radius of the circular track is 105 metres, calculate his speed. (Given $\Pi=22 / 7$)

Q 9 What name is given to the speed in specific direction?

Q 10 Give one example of a situation in which a boy has a certain average speed but its average velocity is zero.

Q 11 What do the following measure in a car?
(a) Speedometer
(b) Odometer.

Q 12 When does the velocity and speed of a moving body become identical?

Q 13 A car travels a distance of 300 km from Noida to Ambala towards North in 5 hours. Calculate (i) speed \& (ii) velocity of car for this journey?

Q 14 Acceleration is the rate of change of velocity. Draw a graph to show the motion of a body with uniform acceleration.

Q 15 A car covers a distance from A to B at $40 \mathrm{~km} / \mathrm{h}$ and while returning it travels at $50 \mathrm{~km} / \mathrm{h}$. calculate the average speed.

Q 16 We know that acceleration is the rate of change of velocity. A car is moving with constant velocity. Show that the acceleration is zero.

Downloaded from www.studiestoday.com

Q 17 Draw the graph to show non-uniform motion.

Q 18 Look at the table:

Time	$10: 30 \mathrm{am}$	$11: 00 \mathrm{am}$	$11: 30 \mathrm{am}$	$12: 00$ noon	$12: 30 \mathrm{pm}$
Distance from origin point (KM)	0	15	28	40	60

1) Is the car is moving with constant speed?
2) What is the average speed?
3) Which duration represents the maximum velocity?

Q 19 Name the motion when distance travelled by an object decreases with time. Also show the distance time variation.

Q 20 A driver changes the speed of car from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 5 seconds. Find the acceleration of the car?

Q 21 A stone is dropped freely from the top of a tower and it reaches the ground in 4 seconds. Calculate height of the tower. $\quad(\mathrm{g}=10$ $\mathrm{m} / \mathrm{s}^{2}$)

Q 22 From the top of a tower 45 m high, two stones are released. One vertically downwards and the other with a horizontal velocity of $30 \mathrm{~m} / \mathrm{s}$. How long will each stone take to strike the ground and how far from the tower will each stone strike the ground? $\quad(\mathrm{g}=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)

Q 23 A body starts from rest and acquire a velocity of $10 \mathrm{~m} / \mathrm{s}$ in 2 seconds. Find acceleration.

Q 24 Give the interpretation of the graph:

Downloaded from www.studiestoday.com

Q 25 Give the interpretation of the graph:

Q 26 A cyclist travels $3 / 4$ of a circular track from A to B as shown in figure. The radius of the circular track is 400 m .

(i) What is the distance travelled by the cyclist?
(ii) What is the displacement?

Q 27 State the reason, why velocity-time graph can never be a straight line parallel to velocity axis?

Q 28 Draw displacement-time and velocity-time graphs for a body moving with constant velocity.

Q 29 If initially the body is moving with some uniform velocity and then it accelerates, draw velocity-time graph for the motion.

Q 30 When acceleration due to gravity is positive and negative?

Q 31 The graph shows the position of body at different times. Calculate the speed of the body as it moves from:

(i) A to B
(ii) B to C and
(iii) C to D .

Q 32 A racing car has a uniform acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. What distance will it cover in 10 seconds after the start?
Q 33 What type of motion does a freely falling body exhibit?
Q 34 Study the speed time graph of a body given here and answer the following questions:

(a) What type of motion is represented by OA?
(b) What type of motion is represented by $A B$?
(c) What type of motion is represented by BC?

