Downloaded from www.studiestoday.com

CONGRUENT TRIANGLES

VERY SHORT ANSWER TYPE QUESTIONS

Q.1 In the given △ABC, AD is the median, BL → AD and CM → DM.

Prove that BL = CM.

Q.2 In the given figure, AB divides ∠DAC in the ratio 1:3 and AB = DB. Determine the value

50°, Find∠BOC.

10%

Q.4 In the given figure, AM \perp BC and AN is the bisector of \angle A, If \angle B = 65 and ∠C = 33°, find ∠ MAN.

50

Q.5 ABC is an isosceles triangle with AB = AC. AD bisects exterior angle PAC and CD BA.

Prove that (i) \(\text{DAC} = \(\text{BCA} \) (ii) ABCD is a parallelogram.

SHORT ANSWER TYPE QUESTIONS

Q.6 In the given figure, $\angle B = \angle E$, BD = CE and $\angle 1 = \angle 2$. Show that \triangle ABC = \triangle AED.

Q.7 ABCD is a parallelogram and E is the midpoint of side BC. DE and AB on producing

meet at F. Prove that AF = 2AB.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

TRIANGLES CONTINUED...

Q.14 In the given figure, show that

Q.15 In the given figure, the side BC of ABC is produced to D. The bisector of ∠A meets BC in L. Prove that ∠ABC + ∠ACD = &∠ALC

Q.16 In a right angled triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side.

MULTIPLE CHOICE QUESTIONS

Q.17 Two sides of a triangle are of lengths 5 cm and 1.5 cm, the length of the third side of the triangle cannot be

- (a) 3.6 cm
- (b) 4.1 cm

Q.18 In the given figure, the measure of ABC is

- (c) 3.8 cm
- (d) 3.4 cm

- (a) 60°
- (b) 30°
- (c) 45°
- (d) 90°

Q.19 In triangles ABC and DEF, AB = FD & ∠ A = ∠D. The two triangles will be congruent by SAS axiom if

- (a) BC = EF
- (b) AC = DE
- (c) AC = EF (d) BC = DE

Q.20 In the given figure, the congruency rule used in proving △ ACB ≅ △ ADB is

- (a) ASA
- (b) SAS
- (c) AAS
- (d) RHS

Q.21 D is a point on the BC of a △ABC such that AD bisects ∠ BAC. Then

- (a) BD = CD (b) BA > BD
- (c) BD > BA (d) CD > CA