Downloaded from www.studiestoday.com

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF MATHEMATICS CLASS IX

WORKSHEET NO. 5 TRIANGLES

SECTION A: (1 MARK)

- 1. In $\triangle PQR$ if $\angle QPR = 80^{\circ}$ and PQ = PR, find $\angle R$ and $\angle Q$ (CCE 2010)
- 2. In the given fig 1, Mention the congruency rule used in proving $\triangle ACB \cong \triangle ACD$
- 3. In the given figures, BD and YE are the medians. Find the value of YZ.(State the reasons)

SECTION B: (2 MARKS)

- 4. Line segments AB and CD intersect at M. If AC∥DB and M is midpoint of AB. Prove that M is midpoint of CD. (CCE 2010)
- 5. In the given figure, RV = VT, QV = VU, $VR \perp SQ$ and $VT \perp SU$. Prove that SQ = SU.

- 6. In $\triangle PSR$, Q is a point on SR such that PQ = PR, show that PS > PQ.
- 7. In fig5, AB =PQ, \angle A = \angle P and \angle ACD = \angle PRS. Prove that \triangle ABC \cong \triangle PQR.
- 8. In \triangle ABC, AD is the bisector of \angle BAC. Prove that AB > BD.

SECTION C: (3 MARKS)

- **9.** ABCD is a square. X and Y are points on the sides AD and BC such that AY = BX. Prove that \angle XAY = \angle YBX. (CCE 2013)
- **10.** In fig 2., AD = BC and BD = AC , prove that \angle DAB = \angle CBA (CCE 2014)

Downloaded from www.studiestoday.com

11. In fig3., I \parallel m and p \parallel q . Show that $\triangle ABC \cong \triangle CDA$.

12. In the given fig, \triangle ABC and \triangle DBC are two isosceles triangle on the same base BC . If \angle BDC =120° and \angle ABD = 40°, then find \angle BAC and \angle ADC. (CCE 2010)

SECTION D: (4 MARKS)

13. ABC is a triangle and D is the midpoint of BC. The perpendiculars from D to AB and AC are equal. Prove that triangle is isosceles. (CCE 2013)

14. Two sides AB and BC and median AM of ΔABC are respectively equal to sides PQ, QR and median PN of ΔPQR then prove that ΔABC \cong ΔPQR.

15. In the given figure, AD and CE are the bisectors of $\angle A$ and $\angle C$ respectively. If $\angle ABC = 90^{\circ}$, find $\angle ADC + \angle AEC$. (CCE 2015)

16. Show that in a quadrilateral ABCD , AB + BC + CD +DA < 2 (BD + AC)