Downloaded from www.studiestoday.com

 INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF MATHEMATICS CLASS IXWORKSHEET NO. 5

SECTION A: (1 MARK)

1. In $\triangle \mathrm{PQR}$ if $\angle \mathrm{QPR}=80^{\circ}$ and $\mathrm{PQ}=\mathrm{PR}$, find $\angle \mathrm{R}$ and $\angle \mathrm{Q}$
(CCE 2010)
2. In the given fig 1 , Mention the congruency rule used in proving $\triangle A C B \cong \triangle A C D$
3. In the given figures, $B D$ and $Y E$ are the medians. Find the value of YZ. (State the reasons)

SECTION B: (2 MARKS)

4. Line segments $A B$ and $C D$ intersect at M. If $A C \| D B$ and M is midpoint of $A B$. Prove that M is midpoint of CD. (CCE 2010)
5. In the given figure, $\mathrm{RV}=\mathrm{VT}, \mathrm{QV}=\mathrm{VU}, \mathrm{VR} \perp \mathrm{SQ}$ and $\mathrm{VT} \perp S U$. Prove that $\mathrm{SQ}=\mathrm{SU}$.

Fig 5.
6. In $\triangle P S R, Q$ is a point on $S R$ such that $P Q=P R$, show that $P S>P Q$.
7. In fig5, $A B=P Q, \angle A=\angle P$ and $\angle A C D=\angle P R S$. Prove that $\triangle A B C \cong \triangle P Q R$.
8. In $\triangle A B C, A D$ is the bisector of $\angle B A C$. Prove that $A B>B D$.

SECTION C: (3 MARKS)

9. $A B C D$ is a square. X and Y are points on the sides $A D$ and $B C$ such that $A Y=B X$. Prove that $\angle \mathrm{XAY}=\angle \mathrm{YBX}$.
(CCE 2013)
10. In fig 2., $\mathrm{AD}=\mathrm{BC}$ and $\mathrm{BD}=\mathrm{AC}$, prove that $\angle \mathrm{DAB}=\angle \mathrm{CBA}$
(CCE 2014)

Downloaded from www.studiestoday.com

11. In fig3., $1 \| m$ and $p \| q$. Show that $\triangle A B C \cong \triangle C D A$.

Fig 4.

12. In the given fig, $\triangle A B C$ and $\triangle D B C$ are two isosceles triangle on the same base $B C$. If $\angle \mathrm{BDC}=120^{\circ}$ and $\angle \mathrm{ABD}=40^{\circ}$, then find $\angle \mathrm{BAC}$ and $\angle \mathrm{ADC}$.

SECTION D: (4 MARKS)

13. $A B C$ is a triangle and D is the midpoint of $B C$. The perpendiculars from D to $A B$ and $A C$ are equal. Prove that triangle is isosceles.
(CCE 2013)
14. Two sides $A B$ and $B C$ and median $A M$ of $\triangle A B C$ are respectively equal to sides $P Q$, $Q R$ and median $P N$ of $\triangle P Q R$ then prove that $\triangle A B C \cong \triangle P Q R$.
15. In the given figure, $A D$ and $C E$ are the bisectors of $\angle A$ and $\angle C$ respectively. If $\angle A B C=90^{\circ}$, find $\angle \mathrm{ADC}+\angle \mathrm{AEC}$.
(CCE 2015)

16. Show that in a quadrilateral $A B C D, A B+B C+C D+D A<2(B D+A C)$
