Q1 Which of the following is an irrational number :
(a) $\sqrt{ } 9$
(b) 3.026026026
(c) 4.020020002 .
(d) $22 / 7$

Q2 If $\mathrm{x}=2+\sqrt{ } 3$, then $\left(x+\frac{1}{x}\right)=$
(a) $-2 \sqrt{3}$ (b) 2
(c) 4 (d) $4-2 \sqrt{3}$

Q3 Which of the following numbers has terminating decimal form:
(a) $\frac{37}{45}$ (b) $21 / 2^{3} 5^{6}$
(c) $17 / 49$ (d) $89 / 2^{2} 3^{2}$

Q4 What will be the value of $a$ if $x+a$ is a factor of $x^{3}+a x^{2}-2 x+a+6$ :
(a) 3 (b) 4 (c) -2 (d) -3

Q5 The degree of the polynomial $8 x^{4}-36 x+5 x^{7}+1$ is :
(a) 4 (b) 1
(c) 5 (d) 7

Q6 Find two rational numbers lying between $1 / 2$ and $2 / 5$.
Q7 Express 0.2562626262....in the form of p/q.
Q8 Give an example of two irrational numbers, whose
(i) Product is a rational number.
(ii) Difference is a rational number.

Q9 Simplify: (i) $\left(15^{1 / 3} / 9^{1 / 4}\right)^{-6}$ (ii) $1 /(27)^{-1 / 3}+1 /(625)^{-1 / 4}$
Q10 Find the value of $a$ and $b$ if $\frac{5+\sqrt{6}}{5-\sqrt{6}}=a+b \sqrt{6}$.
Q11 If the polynomials $p x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+p$ are divided by $x-3$ then the remainder in each case is the same. Find the value of $p$.
Q. 12 Factorize: (i) $9 x^{2}-22 x+8$. (ii) $x^{3}-x^{2}-14 x+24$ (by using factor theorem)

## Downloaded from www.studiestoday.com

1. Explain each of the following in $p / q$ form:
2. (i) 0.675 (ii) $0.3 \overline{2}$ (iii) $0.12 \overline{3}$
(iv) $0.003 \overline{52}$
(v) $4 . \overline{32}$ (vi) 2.317317317 .....
3. Find two irrational numbers and two rational numbers between 0.5 and 0.55
4. Simplify each of the following by rationalizing the denominator.
5. (i) $\frac{7+3 \sqrt{5}}{7-3 \sqrt{5}}$
(ii) $\frac{2 \sqrt{3}-\sqrt{5}}{2 \sqrt{2}+3 \sqrt{3}}$
(iii) $\frac{7 \sqrt{3}-5 \sqrt{2}}{\sqrt{48}+\sqrt{18}}$
6. Simplify:- a) $3 \sqrt{5}+-\sqrt{5}+\sqrt{180}$
(b) $\sqrt{54}+\sqrt{150}$
7. Give an example each of two irrational numbers, whose
(i) difference is a rational number
(v) product is a rational number
(ii) difference is an irrational number
(vi) product is an irrational number
(iii) sum is a rational number
(vii) quotient is a rational number
(iv) sum is an irrational number
(viii) quotient is an irrational number
8. Without actual division decide which of following rational numbers have terminating decimal representation:-
(i) $\frac{33}{375}$
(ii) $\frac{15}{28}$
(iii) $\frac{16}{45}$ (iv) $\frac{12}{35}$
(v) $\frac{80}{27}$
(vi) $\frac{123}{1250}$
9. Examine whether the following numbers are rational or irrational
10. (i) $\frac{3 \sqrt{8}}{\sqrt{2}}$
(ii) $\left(\sqrt{2}+\sqrt{\frac{1}{2}}\right)^{2}$
(iii) $\frac{22 / 7}{5 \Pi}$
(iv)

$$
(3+\sqrt{2})(2-\sqrt{3})(3-\sqrt{2})
$$

$(2+\sqrt{3})$
11. Represent $\frac{8}{5}$ and $\sqrt{20}$ on a number line.
12. (a) Represent $\sqrt{5.2}$ on a number line. (b) Visualize 0.436 on the number line
13. Insert 6 rational numbers between $\frac{-2}{3}$ and $\frac{3}{4}$
14. Find two irrational numbers between $\sqrt{3}$ and 2 .
15. Rationalise the denominator of $\frac{1}{1-\sqrt{7}}$
16. Given $\sqrt{3}=1.732$ app., find to three places of decimal the value of $\frac{1+2 \sqrt{3}}{2-\sqrt{3}}$
17. Find the values of ' $a$ ' and ' $b$ ' if
18. (a) $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a+\mathrm{b} \sqrt{3}$
(b) $\frac{5+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=\frac{1}{2} a+3 \mathrm{~b} \sqrt{15}$
19. Simplify:- (a) $\frac{3}{\sqrt{5}-\sqrt{3}}$
(b) $\frac{2 \sqrt{7}}{\sqrt{5}+\sqrt{3}}$
21. Evaluate:- a) $(390625 \mid 6561)^{1 / 2}$
(b) $(1296)^{1 / 4} \times(1296)^{1 / 2}$

## Downloaded from www.studiestoday.com

## Section - A

Q. 1 Which of the following expressions is polynomial?
(i) $x^{5}-2 x^{3}+x+7$
(ii) $y^{3}-\sqrt{3} y$
(iii) $5 \sqrt{z}-6$
(iv) $x-\frac{1}{x}$
(v) $x^{108}-1$
(vi) $\sqrt[3]{x}-27$
(vii) $x^{-2}+2 x^{-1}+3$
Q. 2 Write the degree of each of the following polynomial.
(i) $2 x-\sqrt{5}$
(ii) $3-x+x^{2}-6 x^{3}$
(iii) 9
(iv) $8 x^{4}-36 x+5 x^{7}$
(v) $x^{9}-x^{5}+3 x^{10}+8$
(vi) $2-3 x^{2}$
Q. 3 (i) Give an example of a binomial of degree 27.
(ii) Give an example of a monomial of degree 16.
(iii) Give an example of trinomial of degree 3 .

## Section - B

Q. 4 If $p(x)=5-4 x+2 x^{2}$ find (i) $p(0)$ (ii) $p(3)$ (iii) $p(-2)$
Q. 5 Find the zeros of the polynomials given below:
(i) $p(x)=x-5$
(ii) $q(x)=x+4$
(iii) $h(x)=6 x-1$
(iv) $p(x)=a x+b$
(v) $r(x)=x^{2}+3 x$
(vi) $l(x)=x^{2}+2 x+1$
Q. 6 Find the remainder when $f(x)=12 x^{3}-13 x^{2}-5 x+7$ is divided by $(3 x+2)$ ?
Q. 7 Show that $(x+5)$ is a factor of the polynomial
$f(x)=x^{3}+x^{2}+3 x+115$
Q. 8 Find the value of a for which $(x-a)$ is a factor of the polynomial.
$f(x)=x^{5}-a^{2} x^{3}+2 x+a-3$

## Section-C

Q. 9 Factorize the following expressions.
(i) $5 x^{2}-20 x y$
(ii) $5 a(b+c)-7 b(b+c)$
(iii) $x(x-y)^{2}+3 x^{2} y(x-y)$
(iv) $6 a b-b^{2}+12 a c-2 b c$
(v) $x^{2}+\frac{1}{x^{2}}+2-2 x-\frac{2}{x}$
Q. 10 Factorize :
(i) $9 x^{2}-16 y^{2}$
(ii) $x^{3}-x$
Q. 11 Factorize:
$a(a-1)-b(b-1)$
Q. 12 Factorize following expressions.
(i) $x^{2}+9 x+18$
(ii) $x^{2}-4 x-21$
(iii) $x^{2}-9 x+18$
(iv) $x^{2}-19 x+78$
Q. 13 Calculate (997) ${ }^{2}$ using algebraic identities.
Q. 14 Calculate $103 \times 107$ using algebraic identities.
Q. 15 Expand $(2 a+3 b+4 c)^{2}$.
Q. 16 Factorize $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.
Q. 17 Expand (i) $(4 a+5 b)^{3}$
(ii) $(5 x-3 y)^{3}$
Q. 18 Evaluate (i) $(95)^{3}$
(ii) $(106)^{3}$
Q. 19 Factorize
(i) $x^{3}+64$
(ii) $27 x^{3}+125 y^{3}$
(iii) $8 a^{3}-27 b^{3}$
(iv) $1-64 a^{3}$

Downloaded from www.studiestoday.com

## Section - D

Q. 20 Factorize
$a^{3}+27 b^{3}+8 c^{3}-18 a b c$
Q. 21 Factorize
$(p-q)^{3}+(q-r)^{3}+(r-p)^{3}$
Q. 22 Find the product
$(3 x-5 y-4)\left(9 x^{2}+25 y^{2}+15 x y+12 x-20 y+16\right)$
Q. 23 If If $x+y+z=9$ and $x y+y z+z x=23$ then find the value of $\left(x^{3}+y^{3}+z^{3}-3 x y z\right) ?$

## Self Evaluation

Q. 24 Which of the following expression is a polynomial?
(a) $\sqrt{x}-1$
(b) $\frac{x-1}{x+1}$
(c) $x^{2}-\frac{2}{x^{2}}+5$
(d) $x^{2}+\frac{2 x^{3 / 2}}{\sqrt{x}}+6$
Q. 25 Degree of zero polynomial is
(a) 1
(b) 0
(c) not defined
(d) none of these
Q. 26 For what value of k is the polynomial $p(x)=2 x^{3}-k x^{2}+3 x+10$ exactly divisible by $(x+2)$ ?
(a) $\frac{-1}{3}$
(b) $\frac{1}{3}$
(c) 3
(d) -3
Q. 27 The zeroes of the polynomial $p(x)=3 x^{2}-1$ are
(a) $\frac{1}{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{-1}{\sqrt{3}}$
(d) $\frac{1}{\sqrt{3}}$ and $\frac{-1}{\sqrt{3}}$
Q. 28 If $\frac{x}{y}+\frac{y}{x}=-1$ where $x \neq 0, y \neq 0$ then find the value of $x^{3}-y^{3}$.
Q. 29 If $(x+2)$ and $(x-1)$ are factors of $\left(x^{3}+10 x^{2}+m x+n\right)$ then find value of m \& n ?
Q. 30 Find the value of $(369)^{2}-(368)^{2}$
Q. 31 Find value of $104 \times 96$
Q. 32 If $a+b+c=0$ find value of $\left(\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}\right)$ ?

## Downloaded from www.studiestoday.com

## Section - A

Q. 1 In the given figure, $x-30^{\circ}$

The value of y is
(a) $10^{0}$
(b) $40^{\circ}$
(c) $36^{0}$
(d) $45^{0}$

Q. 2 An exterior angle of a triangle is $75^{\circ}$ and its two interior opposite angles are equal. Each of these equal angles is
(a) $105^{\circ}$
(b) $50.5^{0}$
(c) $52^{0}$
(d) $37.5^{0}$
Q. 3 The compliment of an angle ' $m$ ' is:
(a) m
(b) $90^{\circ}+\mathrm{m}$
(c) $90^{\circ}-\mathrm{m}$
(d) $\mathrm{m} \times 90^{\circ}$
Q. 4 If one angle of a triangle is equal to the sum of the other two equal angles, then the triangle is
(a) an isosceles triangle
(b) an obtuse triangle
(c) an equilateral triangle
(d) a right triangle
Q. 5 In the given figure $\angle a$ and $\angle b$
form a linear pair if $a-b=100^{\circ}$
then $a$ and $b$ are
(a) $120^{\circ}, 20^{\circ}$
(b) $40^{0}, 140^{\circ}$
(c) $50^{\circ}, 150^{\circ}$
(d) $140^{\circ}, 40^{\circ}$

Q. 6 Angle of a triangle are in the ratio $2: 4: 3$. The smallest angle of the triangle is
(a) $60^{\circ}$
(b) $40^{\circ}$
(c) $80^{\circ}$
(d) $20^{\circ}$

## Section-B

Q. 7 Two adjacent angles are equal. Is it necessary that each of these angles will be a right angle? Justify your answer.
Q. 8 In the following figures which of the two lines are parallel and why?
(i)

(ii)

Q. 9 In the given fig. sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to point $S$ and $T$ respectively. If $\angle P Q T=110^{\circ}$ and $\angle S P R=135^{\circ}$ find $\angle P R Q$

Q. 10 In the fig. $l_{1} \| l_{2}$ and $m_{1} \| m_{2}$ if $\angle 1=115^{0}$ find $\angle 2$

Q. 11 Sum of two angles of a triangle is $90^{\circ}$ and their difference is $50^{\circ}$. Find all the angles of the triangle.
Q. 12 In the adjoining figure, $A B \| D E$, find the value of $x$.


## Section-C

Q. 13 In the given figure AB and CD intersect each other at O . If $\angle A O E=75^{\circ}$ find the value of $x, y$ and $z$.

Q. 14 Prove that vertically opposite angle are equal.
Q. 15 In the given figure $x=y$ and $a=b$ prove that $l \| n$

Q. 16 In the given figure $D E \| Q R$ and AP and BP are bisectors of $\angle E A B$ and $\angle R B A$ respectively find $\angle A P B$

Q. 17 The angles of a triangle are in the ratio 2:3:5 find the angles of the triangle.
Q. 18 Find x and y in the following figure.

Q. 19 In figure find x .


Downloaded from www.studiestoday.com

## Section - A

Q. 1 Which of the following is not a criterion for congruence of triangles?
(a) SAS
(b) SSA
(c) ASA
(d) SSS
Q. 2 If $A B=Q R, B C=P R$ and $C A=P Q$ then
(a) $\triangle A B C \cong \triangle P Q R$
(b) $\triangle C B A \cong \triangle P R Q$
(c) $\triangle B A C \cong \triangle R P Q$
(d) $\triangle P Q R \cong \triangle B C A$
Q. 3 In $\triangle \mathrm{PQR}$, if $\angle R>\angle Q$ then
(a) $Q R>P R$
(b) $P Q>P R$
(c) $P Q<P R$
(d) $Q R<P R$
Q. $4 \triangle A B C \cong \triangle D E F$ and if $A B=3=D E$ and $B C=E F=4$ then necessary condition is
(a) $\angle A=\angle D$
(b) $\angle B=\angle E$
(c) $\angle C=\angle F$
(d) $C A=F D$
Q. 5 In the given figure, if $\mathrm{OA}=\mathrm{OB}, \mathrm{OD}=\mathrm{OC}$ then $\triangle A O D \cong \triangle B O C$ by congruence rule.
(a) SSS
(b) ASA
(c) SAS
(d) RHS

Q. 6 In the figure if $\mathrm{PQ}=\mathrm{PR}$ and $\angle P=80^{\circ}$, then measure of Q is
(a) $100^{\circ}$
(b) $50^{\circ}$
(c) $80^{\circ}$
(d) $40^{\circ}$


## Downloaded from www.studiestoday.com

Q. 7 In the figure $\triangle A B C \cong \triangle A D C$, if $\angle A C B=25^{\circ}$ and $\angle B=125^{\circ}$, then $\angle C A D$ is
(a) $25^{\circ}$
(b) $65^{\circ}$
(c) $30^{0}$
(d) $75^{\circ}$

Q. 8 In the figure, if $\triangle A B C \cong \triangle C D A$, the property of congruence is
(a) $S S S$
(b) SAS
(c) RHS
(d) ASA

Q. 9 It is not possible to construct a triangle when its sides are
(a) $8.3 \mathrm{~cm}, 3.4 \mathrm{~cm}, 6.1 \mathrm{~cm}$
(b) $5.4 \mathrm{~cm}, 2.3 \mathrm{~cm}, 3.1 \mathrm{~cm}$
(c) $6 \mathrm{~cm}, 7 \mathrm{~cm}, 10 \mathrm{~cm}$
(d) $3 \mathrm{~cm}, 5 \mathrm{~cm}, 5 \mathrm{~cm}$
Q. 10 In a $\triangle A B C$, if $A B=A C$ and $B C$ is produced to $D$ such that $\angle A C D=100^{\circ}$ then $\angle A$
(a) $20^{\circ}$
(b) $40^{\circ}$
(c) $60^{\circ}$
(d) $80^{\circ}$
Q. 11 If $\triangle P Q R \cong \triangle E F D$, then $\angle E-$
(a) $\angle P$
(b) $\angle Q$
(c) $\angle K$
(d) None of these
Q. 12 If $\triangle P Q R \cong \triangle E F D$, then $E D=$
(a) $P Q$
(b) $Q R$
(c) PR
(d) None of these

## Section - B

Q. 13 In the figure $A B=A C$ and $\angle A C D=120^{\circ}$ find $\angle A$

Q. 14 In a $\triangle A B C$ if $\angle A=45^{\circ}$ and $\angle B=70^{\circ}$ determine the shortest and largest sides of the triangle.
Q. 15 In the given figure $A B$ is bisector of $\angle A$ and $A C=A D$ Prove that $B C=B D$ and $\angle C=\angle D$

Q. $16 A D$ is an altitude of an isosceles triangle $A B C$ is which $A B=A C$. Prove that $\angle B A D=\angle D A C$
Q. 17 In an acute angled $\triangle A B C, S$ is any point on $B C$. Prove that $A B+B C+C A>2 A S$
Q. 18 In the given figure $B A \perp A C, D E \perp D F$
such that $B A=D E$ and $B F=E C$
show that $\triangle A B C \cong \triangle D E F$

$Q .19 Q$ is a point on the side $S R$ of $A \triangle P S R$ such that $P Q=P R$. Prove that $P S>P Q$

## Section-C

Q. 20 In the given figure if AD is the bisector of $\angle A$ show that
(i) $A B>B D$
(ii) $A C>C D$

Q. 21 In the given figure $A B=A C, D$ is the point is the interior of $\triangle A B C$ such that $/ D B C=/ D C B$ Prove that AD bisects $/ B A C$ of $\triangle A B C$

Q. 22 Prove that if two angles of a triangle are equal then sides opposite to them are also equal.
Q. 23 In the figure, it is given that $\mathrm{AE}=\mathrm{AD}$ and $\mathrm{BD}=\mathrm{CE}$. Prove that $\triangle A E B \cong \triangle A D C$

Q. 24 Prove that angles opposite to two equal sides of a triangle are equal.

## Heron's Formula

Q 1 Write Heron's formula to find the area of a triangle.
Mark (1)
Q 2 Write the area of the rhombus, if $d_{1}$ and $d_{2}$ are the lengths of its diagonals.
Mark (1)
Q 3 What is the area of equilateral triangle whose side is a units ?
Mark (1)
Q4 What is the area of an isosceles right angled triangle whose equal side is a units?
Mark (1)
Q 5 What is the side of a rhombus whose diagonal is $d_{1}$ and $d_{2}$ ?
Mark (1)
Q 6 Find the area of a triangle whose sides are $13 \mathrm{~cm}, 14 \mathrm{~cm}$ and 15 cm .
Marks (2)
Q 7 The perimeter of a triangular field is 450 m and its sides are in the ratio 13:12:15. Find the area of the triangle.
Marks (2)
Q 8 Find the area of a triangle whose two sides are 8 cm and 11 cm and the perimeter is 32 cm .
Marks (2)
Q 9 The lengths of the sides of a triangle are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Find the length of the perpendicular from the opposite vertex to the side whose length is 13 cm .

Marks (2)
Q 10 If the sides of the triangle are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm , find the area of the triangle. Marks (2)
Q 11 The perimeter of a right triangle is 450 m . If its sides are in the ratio $13: 12: 5$. Find the area of the triangle.
Marks (2)
Q 12 There is a slide in a park. One of its side walls has been painted in some colours with a message "KEEP THE PARK GREEN AND CLEAN ${ }^{\prime \prime}$. If the sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m , find the area painted in colour.

Marks (2)
Q 13 If the side of an equilateral triangle is ' $a$ ', then find the altitude of the equilateral triangle.
Marks (2)
Q 14 Find the area of a triangle whose two sides are 8 cm and 11 cm and the perimeter is 32 cm .
Marks (2)
Q 15 A rhombus shaped field has green grass for 18 horses to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each Horse be grazing?

Marks (2)
Q 16 Find the area of a quadrilateral ABCD whose sides are $9 \mathrm{~m}, 40 \mathrm{~m}, 28 \mathrm{~m}$ and 15 m respectively and the angle between the first two sides is a right angle.

Marks (2)
Q 17 Find the area of a rhombus whose perimeter is 80 m and one of diagonal is 24 m .
Marks (2)
Q 18 A floral design on a floor is made up of 16 tiles that are triangular, the sides of the triangle being $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm . Find the area of the floral design.

Marks (2)


Marks (2)
Q20 In fig. given below, $B D$ is the diagonal of quadrilateral $A B C D$. Find the area of $A B C D$.


Marks (3)
Q21 Compute the area of the following trapezium:


Marks (3)
Q22 Find area and perimeter of triangle whose sides are $8 \mathrm{~cm}, 19 \mathrm{~cm}$ and 15 cm
Marks (3)
Q 23 Find the area of triangle whose sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}, 13 \mathrm{~cm}$. Also find the Shortest altitude.
Marks (3)
Q24 In a rectangular field of dimension $50 \mathrm{ft} \times 30 \mathrm{ft}$, a triangular park is constructed. If the dimension of the triangular park is 14 ft , 15 ft and 13 ft , find the area of the remaining field.

## Downloaded from www.studiestoday.com

Q 25 Sanya owns a piece of land which is in the shape of a rhombus. She wants her daughter and son to work on the land and produce different crops to suffice the needs of their family. She divided the land in two equal parts. If the perimeter of the land is 400 m and one of the diagonals is 160 m , how much area each of them will get?

Marks (3)
Q 26 An umbrella is made by stitching 10 triangular pieces of cloth of two different colours, each piece measuring $20 \mathrm{~cm}, 50 \mathrm{~cm}$ and 50 cm How much cloth of each colour is required for the umbrella?

Marks (3)
Q 27 Find the area of triangle whose sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}, 13 \mathrm{~cm}$. Also find the shortest altitude.
Marks (3)
Q 28 A kite is in the shape of a square with diagonal 32 cm and an isosceles triangle of base 8 cm and equal sides are 6 cm . How much paper is required to build the kite?


Marks (3)
Q 29 Find the area of the trapezium whose parallel sides are $25 \mathrm{~cm}, 13 \mathrm{~cm}$ and other sides are 15 cm and 15 cm
Marks (3)
Q 30 The side of a quadrilateral taken in order are $5,12,14$ and 15 metres respectively and the angle formed by the first two sides is a right angles find its area.


Marks (3)
Q 31 Find the area and perimeter of triangle whose sides are $8 \mathrm{~cm}, 19 \mathrm{~cm}$ and 15 cm .
Marks (3)
Q 32 Find the area of a quadrilateral ABCD which $\mathrm{AD}=24 \mathrm{~cm}, \angle \mathrm{BAD}=90^{\circ}$ and $\triangle \mathrm{BCD}$ is an equilateral triangle whose each side is 26 cm .

Marks (4)
Q 33 Mayank made a picture of an aeroplane with paper as shown in figure calculate total area of paper used


Marks (4)

## Downloaded from www.studiestoday.com

Q 34 A kite in the shape of a square with diagonal 32 cm and an isosceles triangle of base 8 cm and equal sides are 6 cm how much paper is required to build the kite.

Marks (4)
Q 35 The perimeter of a right triangle is 60 cm and its hypotenuse is 26 cm . Find area of triangle and its other two sides.
Marks (4)
Q $36 \Lambda$ trapezium PBCQ with its parallel sides $Q C$ and $P B$ in the ratio $7: 5$ is cut from a rectangle $\Lambda B C D$, if area of trapezium is $1 / 7$ part of the area of rectangle, find the length of $O C$ and $P B$.


Marks (4)
Q 37 A trapezium whose parallel sides are 25 cm and 10 cm . The non-parallel sides are 14 cm and 13 cm find the area of the trapezium.

Marks (4)
Q 38 The sides of a quadrilateral $A B C D$, taken in order are $5 \mathrm{~cm}, 12 \mathrm{~cm}, 14 \mathrm{~cm}$ and 15 cm respectively, and angle contained between first two sides is a right angle. Find its area.

Marks (4)
Q 39 A rhombus sheet, whose perimeter is 32 cm and whose one diagonal is 10 cm long, is painted on both sides at the rate of 5 per $\mathrm{sq} . \mathrm{cm}$. Find the cost of painting.

Marks (4)
Q 40 The perimetet of a right triangle is 60 cm and its hypotenuse is 26 cm Find othen two sides and atea of aiangle?
Marks (4)
Q 41 A field is in the shape of trapezium whose parallel sides are 25 m and 10 m . The non-parallel sides are 14 m and 13 m . Find the area of the field.

$-25 \mathrm{~cm}$
Marks (4)

