Chapter - 8

(Quadrilaterals)

Key Concept

((1)) Sum of the angles of a quadril	ateral is 360°.
١		, cam or the angles of a quadrit	atoral lo oco .

- (2) A diagonals of a parallelogram divides it into two congruent triangles.
- (3) In a parallelogram
 - (a) diagonals bisects each other.
 - (b) opposite angles are equal.
 - (c) opposite sides are equal
- (4) Diagonals of a square bisects each other at right angles and are equal, and viceversa.
- (5) A line through the mid-point of a side of a triangle parallel to another side bisects the third side. (Mid point theorem)
- (6) The line through the mid points of sides of a Δ , $\|$ to third side and half of it.

Section - A

Q.1	The figures obtained by jo	pining the mid-points of the sides of a rhombus, taken in	
	order, is		
	(a) a square	(b) a rhombus	

(c) a parallelogram (d) a rectangle

Q.2 The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O, if $\angle DAC = 32^0$ and $\angle AOB = 72^0$

then ∠DBC is

(a) 32^0 (b) 24^0 (c) 40^0 (d) 63^0

Q.3 In a square ABCD, the diagonals AC and BD bisect at 0. Then ΔAOB is

(a) acute angled (b) right angled

(c) obtuse angled (d) equilateral

- Q.4 ABCD is a rhombus such that $\angle ACB = 40^{\circ}$ then $\angle ADB$ is
 - (a) 40^0
- (b) 45^0
- (c) 50^{0}
- (d) 60^{0}

- Q.5 A quadrilateral ABCD is a parallelogram if
 - (a) AD || BC
- (b) AB = CD

- (c) AB = AD
- (d) $\angle A = 60^{\circ}$, $\angle C = 60^{\circ}$, $\angle B = 120^{\circ}$
- Q.6 Three angles of a quadrilateral are 60°, 70° and 80°. The fourth angle is
 - (a) 150°
- (b) 160^{0}
- (c) 140^0
- (d) None of these

Section - B

Q.7 In the adjoining figure QR=RS

Find $\angle PSR$

- Q.8 Prove that the sum of the four angles of a quadrilateral is 360°.
- Q.9 Prove that the diagonals of a parallelogram bisects each other.
- Q.10 The angles of quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.
- Q.11 ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that ABCD is a square.

Q.12 In the adjoining figure, ABCD is a ||gm. If $\angle DAB = 60^{\circ}$ and $\angle DBC = 80^{\circ}$. Find $\angle CDB$ and $\angle ADB$.

Section - C

- Q.13 Prove that the line segment joining the mid-points of two sides of a triangle is parallel to the third side.
- Q.14 ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- Q.15 Prove that the straight line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides and is equal to half their difference.
- Q.16 In the adjoining figure, D, E and F are mid-points of the sides BC, CA and AB of ΔABC , If AB = 4.3cm, BC = 5.6cm and AC = 3.5cm, find the perimeter of ΔDEF

- Q.17 In a parallelogram ABCD, AP and CQ are drawn perpendiculars from vertices A and C on diagonal BD. Prove that $\Delta APB \cong \Delta CQD$
- Q.18 In a parallelogram ABCD, E and F are points on AB and CD such that AE = CE.

Prove that ED||BF.

Section - D

- Q.19 If a line is parallel to the base of a trapezium and bisects one of the non-parallel sides, then prove that it bisects either diagonal of the trapezium.
- Q.20 AD is a median of $\triangle ABC$ and E is the mid-point of AD. BE Produced meets AC in F. Prove that $AF = \frac{1}{3}AC$
- Q.21 ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
 - (i) D is the mid-point of AC
 - (ii) CM = $MA = \frac{1}{2}AB$
- Q.22 Show that the bisectors of angles of a parallelogram form a rectangle.

Answers -

- Q.1 (d) Rectangle
- $Q,2 (c) 40^{0}$

Q.3 (b) Right angled

 $Q.4 (c) 50^{0}$

Q.5 (d)
$$\angle A = 60^{\circ}$$
, $\angle C = 60^{\circ}$, $\angle B = 120^{\circ}$

Q.6 (a) 150⁰

Q. 7 $\angle PSR = 105^{\circ}$
