Chapter - 9

(Area of parallelograms and triangles)

Key Concepts

* \quad Area of a parallelogram $=$ (base X height)
* \quad Area of a triangle $=1 / 2 \mathrm{X}$ base X height
* Area of a trapezium $=\frac{1}{2} \times($ sum of parallel sides $) \times$ distance between them
* Area of rhombus $=\frac{1}{2} \times$ product of diagonals
* Parallelogram on the same base and between the same parallels are equal in area.
* A parallelogram and a rectangle on the same base and between the same parallels are equal in area.
* Triangles on the same base and between the same parallels are equal in area.
* If a triangle and parallelogram are on the same base and between the same parallels, then.
(Area of triangle) $=\frac{1}{2}($ area of the parallelogram $)$
* A diagonal of parallelogram divides it into two triangles of equal areas. In parallelogram $A B C D$, we have

Area of $\triangle A B D=$ area of $\triangle A C D$

* The diagonals of a parallelogram divide it into four triangles of equal areas therefore

Downloaded from www.studiestoday.com

$$
\operatorname{ar}(\triangle A O B)=\operatorname{ar}(\triangle C O D)=\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)
$$

* A median AD of a $\triangle A B C$ divides it into two triangles of equal areas. Therefore $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A C D)$
* If the medians of a $\triangle A B C$ intersect at G , then

$$
\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)
$$

Section - A

Q. 1 If $E, F, G \& H$ are mid points of sides of parallelogram $A B C D$, then show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$
Q. 2 Point P and Q are on the sides $D C$ and $A D$ of a parallelogram respectively. Show that. $\operatorname{ar}(A P B)=\operatorname{ar}(B Q C)$
Q. 3 Show that a median of a triangle divides it into two triangle of equal area.
Q. 4 PQRS and ABRS are two parallelograms and X being any point on side $B R$. Show that.
(i) $\operatorname{ar}(P Q R S)=\operatorname{ar}(A B R S)$
(ii) $\operatorname{ar}(A \times S)=\frac{1}{2} \operatorname{ar}(P Q R S)$

Downloaded from www.studiestoday.com

Section - B

Q. 5 In given figure $A B C D$ is a quadrilateral and $B E \| A C$ is such that $B E$ meets at E on the extended CD. Show that area of triangle ADE is equal to the area of quadrilateral ABCD .

Q. 6 In given figure E be any point on the median AD of triangle, show that $\operatorname{ar}(A B E)=\operatorname{ar}(A C E)$

Q. 7 Show that the diagonals of a parallelogram divides it into four triangles of equal area.

OR

$O R D, E \& F$ are mid points of sides of triangle $B C, C A \& A B$ respectively. Show that
(i) BDEF is a parallelogram
(ii) $\operatorname{ar}(D E F)=\frac{1}{4} \operatorname{ar}(A B C)$
(iii) $\operatorname{ar}(B D E F)=\frac{1}{2} \operatorname{ar}(A B C)$

Downloaded from www.studiestoday.com

Section - C

Q. $8 \quad A B C D$ is a trapezium in which $A B \| C D$ and diagonals $A C$ and $B D$ intersect at 0 .

Prove that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$
Q. $9 \quad X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at E and F respectively.
$\operatorname{ar}(A B E)=\operatorname{ar}(A C F)$
Q. 10 In adjoining figure $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets DC produced at F. Show that
(i) $\operatorname{ar}(A C B)=\operatorname{ar}(A C F)$
(ii) $\operatorname{ar}(A E D F)=\operatorname{ar}(A B C D E)$

Q. 11 In given figure $\operatorname{ar}(D R C)=\operatorname{ar}(D P C)$ and $\operatorname{ar}(B D P)=\operatorname{ar}(A R C)$ show that both quadrilaterals $A B C D$ and DCPR are trapeziums.

Self Evaluation

Q. 12 In given figure $A B C D$, DCFE and ABFE are parallelogram show that $\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{BCF})$

Q. $13 P$ and Q are respectively the mid points of sides $A B$ and $B C$ of a triangle $A B C$ and R is the mid-point of $A P$, show that.
(i) $\operatorname{ar}(P Q R)=\frac{1}{2} \operatorname{ar}(A R C)$
(ii) $\operatorname{ar}(R Q C)=\frac{3}{8} \operatorname{ar}(A B C)$
(iii) $\operatorname{ar}(P B Q)=\operatorname{ar}(A R C)$
Q. 14 Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base and have equal areas. Show that perimeter of the parallelogram is greater than that of rectangle.

