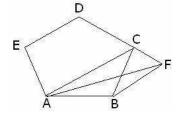
9. Areas of Parallelograms and Triangles

Q 1 State true or false: A diagonal of a parallelogram divides it into two parts of equal areas.

Mark (1)

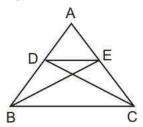

Q 2 State true or false: Parallelograms on the same base and between the same parallels are equal in area.

Mark (1)

Q 3 State true or false: A parallelogram and triangle on same base and between same parallel lines are equal in area.

Mark (1)

Q 4 ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show $ar(\Delta_{ACB}) = ar(\Delta_{ACF})$.

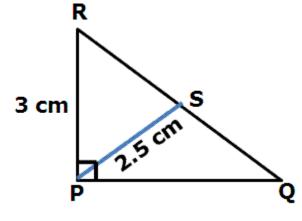

Marks (2)

Q 5 BD is one of the diagonal of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C, respectively, on BD. Show

$$ar(quad. ABCD) = \frac{1}{2}BD.(AM + CN)$$

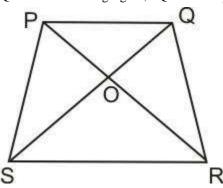
Marks (2)

Q 6 In fig. D and E are points on sides AB and AC respectively of \triangle ABC such that ar(\triangle BCE) = ar(\triangle BCD). Show that DE \parallel BC.


that

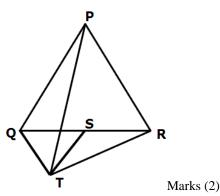
Marks (2)

 $Q\ 7$ Prove that of all the parallelograms of which the sides are given, the parallelogram which is rectangle has the greatest area.


Marks (2)

Q 8 In figure, \angle RPQ = 90 $^{\circ}$, S is the mid-point of QR and SP= 2.5 cm. Compute the area of the triangle PQR.

Marks (2)


Q 9 In the following figure, PQRS is a trapezium in which PQ \parallel SR. Prove that ar(Δ QOR) = ar(Δ POS).

Marks (2)

Q 10 In the given figure, PQR and QST are two quadrilateral triangles such that S is the mid-point of QR.

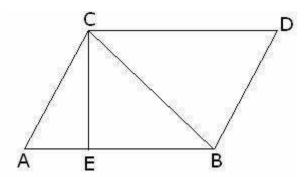
Prove that $ar(\triangle QST) = \frac{1}{2}ar(\triangle PQT)$

Q 11 The angles of a quadrilateral are in the ratio 1:2:3:4. Find all the angles of the quadrilateral.

Marks (2)

Q 12 The angles of a quadrilateral are in the ratio 2:4:5:7. Find the angles.

Marks (2)


Q 13 Prove that , the bisector of any two consecutive angles of parallelogram intersect at right angle.

Marks (2)

Q 14 Two opposite angles of a parallelogram are $(3x-2)^0$ and $(50-x)^0$. Find the measure of each angle of the parallelogram.

Marks (2)

Q 15 Prove that the area of triangle is half the product of any of its sides and the corresponding altitude.

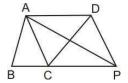


Marks (3)

$$\frac{1}{2}h\times(a+b)$$

Q 16 prove that the area of a trapezium is equal to , where h is the perpendicular distance between parallel sides and a, b are the measurement of parallel sides.

Q 17 If in fig ABCD is a parallelogram, DE \perp AB and BF \perp AD. If AB = 16cm, DE = 8 cm and BF = 10 cm, find AD.


Q 18 ABCD is a trapezium in which AB = 5 cm , AD = BC = 4 cm and distance between parallel sides AB and DC is 3 cm. Find DC and area of trapezium ABCD.

Marks (3)

Q 19 O is any point on diagonal BD of the parallelogram ABCD. Prove that ar(Δ_{OAB}) = ar(Δ_{OBC}).

Marks (3

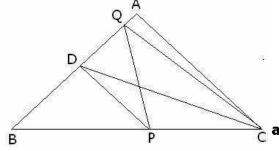
Q 20 ABCD is a Quadrilateral. A line through D, parallel to AC, meets BC produced in P as shown in figure. Prove that ar(\triangle ABP) = ar(Quad ABCD).

Marks (3)

Q 21 XY is a line parallel to side BC of \triangle ABC. BE || AC and CF || AB meet XY (produced on both sides) in E and F respectively. Show that ar(\triangle ABE) = ar(\triangle ACF).

Marks (3)

Q 22 P is the point in the interior of a parallelogram ABCD. Show that


$ar(\triangle APB) + ar(\triangle PCD) = \frac{1}{2}ar(||^{gm} ABCD)$

Marks (4)

Q 23 A quadrilateral ABCD is such that diagonal BD divides its area in two equal parts. Prove that BD bisect AC.

Marks (4)

Q 24 In a triangle ABC, D is the mid-point of AB. P is any point of BC. CQ || PD meets AB in Q. Show

$$\stackrel{\bullet}{\subset} \operatorname{ar}(\triangle \operatorname{BPQ}) = \frac{1}{2} \operatorname{ar}(\triangle \operatorname{ABC})$$

Marks (4)

that.

Q 25 Prove that parallelogram on the same base and between the same parallels are equal in area.

Marks (4)

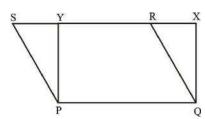
Q 26 The diagonal of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area.

Marks (4)

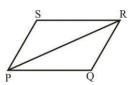
Q 27 A point O inside a rectangle ABCD is joined to the vertices. Prove that $ar(\Delta_{AOB}) + ar(\Delta_{COD}) = (1/2)ar(\parallel^{gm}_{ABCD})$.

Q 28 In \triangle ABC, D is the mid-point of BC, E is the mid-point of BD. If 'O' is the mid-point of AE, prove that ar (\triangle BOE)=(1/8) ar (Δ_{ABC}) .

Marks (4)


Q 29 The side AB of a parallelogram ABCD is produced to any point P. A line through A parallel to CP meets CB produced in Q and the parallelogram PBQR is completed. Show that $ar(\|^{gm} ABCD) = ar(\|^{gm} BPRQ)$.

Q 30 D, E, F are the mid-points of the sides AB,BC and CA respectively of \triangle ABC. Prove that DBEF is a parallelogram whose area is half the area of Δ_{ABC} .

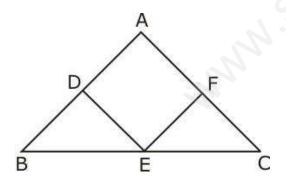

Most Important Questions

- Q 1 Prove that parallelograms on equal bases and between the same parallels are equal in area.
- Q 2 Prove that parallelograms on the same base and having equal areas lie between the same parallels.
- Q 3 The area of parallelogram PQRS is 152 cm². Find the area of rectangle PQXY. If the base PQ = 19 cm, find the height of the parallelogram.

- Q 4 Prove that the area of triangle is half as the area of parallelogram if a parallelogram and a triangle lie on the same base and between the same parallels.
- Q 5 Prove that the area of a triangle is half the product of its base and corresponding height.

Q 6 Find the area of \triangle PQR given that the area of the parallelogram PQRS is 25 cm².

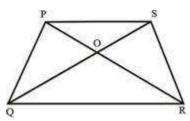
- Q 7 Show that the area of rhombus is half the product of its diagonals.
- Q 8 Show that the area of trapezium is half the product of sum of parallel sides and perpendicular distance between parallel sides.

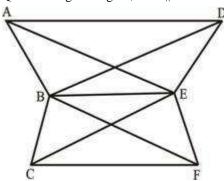


- Q 10 Prove that two triangles having same base and equal areas lie between the same parallels.
- Q 11 Prove that a median of a triangle divides it into two triangles of equal area.
- Q 12 In the given figure, ABCD is a parallelogram and O is any point inside ABCD.

Prove that

$$area(\Delta_{AOB}) + area(\Delta_{OCD}) = \frac{1}{2} area(ABCD).$$


- Q 13 \triangle ABC is a triangle in which D is the mid-point of BC and E is the mid-point of AD. prove that triangle BED= 1/4 (area of triangle ABC).
- Q 14 If D, E and F are the mid points of sides AB, BC and AC respectively then show that


- (i) area (Δ_{ADE}) = $\Delta_{area (AFE)}$
- (ii) area (Δ_{BDE}) = area (Δ_{CEF})

(iii) area (ADEF) =
$$\frac{1}{2}$$
 area (Δ_{ABC})

Q 15 In a trapezium PQRS prove that area (Δ_{POR}) = area (Δ_{SOR})

Q 16 In the given figure, if $BE\parallel CF$ and area (ABCE) = area (BDEF) then prove that AD \parallel BE.

Q 17 If one diagonal of a quadrilateral bisect the other then prove that the first diagonal divides the quadrilateral into two triangles of equal area.

Q 18 In the given figure E is the mid point of BC and D is the mid point of AE. PEDB and QEDC are parallelograms then show that

$$\underset{area\ (\Delta_{PBE})+\, area(\Delta_{QCE})\, =\, }{\underbrace{\frac{1}{2}}}_{area(\Delta_{ABC}).}$$

