RATIONAL NUMBERS

A number which can be written as $\frac{p}{q}$, where p, q, are integers and $q^{1} 0$, is called a rational number Thus, an integer divided by a non-zero integer is called rational number.
Ex. $\frac{2}{3}, \frac{37}{15}, \frac{-17}{19},-3,0,10,4.33,7.123123123 \ldots \ldots \ldots$
In rational number $\frac{\mathrm{p}}{\mathrm{q}}$, p is called first integer or numerator and q the second integer or denominator.
(I) Positive rational numbers: A rational number is said to be positive, if its numerator and denominator are either both positive or both negative

Ex. $\frac{5}{7}$ and $\frac{-2}{-3}$ are both positive rational numbers.
(II) Negative rational numbers: A rational number is said to be negative, if its numerator and denominator are of opposite sign $\frac{-4}{9}$ and $\frac{5}{-12}$ are negative rational numbers,
(III) Equivalent rational numbers: If $\frac{\mathrm{a}}{\mathrm{b}}$ is a rational number and m is a nonzero integer then $\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{a} \times \mathrm{m}}{\mathrm{b} \times \mathrm{m}}$

Ex. $\quad-\frac{3}{4}=\frac{-3 \times 2}{4 \times 2}=\frac{-3 \times 3}{4 \times 3}=\ldots$.
$-\frac{3}{4}=\frac{-6}{8}=\frac{-9}{12}=\ldots$. Such rational number are called equivalent rational numbers.

(a) Natural Numbers (N): The counting numbers 1, 2, 3, are known as natural numbers. $\mathrm{N}=(1,2,3,4, \ldots$.

Downloaded from https:// www.studiestoday.com
(b) Whole Numbers (W) : The number '0' together with the natural numbers 1, 2, 3, ... are known as whole numbers.

(c) Integers (I or $\mathbf{Z}) \quad:$ All natural numbers, 0 and negative of natural numbers are called integers. $I=\{-¥, \ldots . .-3,-2,-1,0,1,2,3 \ldots . \neq\}$
Positive integers : $(1,2,3,4, \ldots .$.$) ; Negative integers : (\ldots-4,-3,-2,-1)$

(v) The set of non-positive integer $=\{\ldots \ldots-4,-3,-2,-1,0\}$

NATURAL NUMBERS, WHOLE NUMBERS, INTEGERS AND FRACTION AS RATIONAL NUMBERS

(i) Since a natural number $\mathrm{n}=\frac{\mathrm{n}}{1}=\frac{\text { an integer }}{\text { a non - zero integer }}$ every natural number is a rational number.
(ii) Now, $0=\frac{0}{\text { any non - zero integer }}$, and is therefore a rational number.

P All natural numbers and 0 being rational numbers imply,
all whole numbers are rational numbers.
(iii) Any integer $(\ldots-3,-2,-1,0,1,2,3, \ldots .$.$) can be written as \frac{p}{q}$. where p is the given integer and $\mathrm{q}=1$ is the non-zero integer.

Thus, every integer is a rational number.
(iv) A fraction $=\frac{x}{y}$, where x and y are natural numbers i.e., positive integer.

Thus, every fraction $=\frac{\text { an integer }}{a \text { non zero integer }}$ and is a rational number.
(i) Every natural number, whole number and integer is a rational number.
(ii) Every terminating decimal is a rational number.
(iii) Every non-terminating repeating (recurring) decimal is a rational number.
(iv) Between any two rational numbers there are an infinite number of rational numbers.

This property is known as the density of rational numbers.

PROPERTIES OF RATIONAL NUMBERS

(I) If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ are two rational numbers then $\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{ad}+\mathrm{bc}}{\mathrm{bd}}$
(II) If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ are two rational numbers then $\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{a} \times \mathrm{c}}{\mathrm{b} \times \mathrm{d}}$
(III) If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}\left({ }^{1} 0\right)$ are two rational numbers, then $\frac{\mathrm{a}}{\mathrm{b}}, \frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{d}}{\mathrm{c}}=\frac{\mathrm{ad}}{\mathrm{bc}}$
(IV) if $\frac{a}{b}, \frac{c}{d}$ and $\frac{e}{f}$ are three rational numbers then $\frac{a}{b} \times\left(\frac{c}{d}+\frac{e}{f}\right)=\left(\frac{a}{b} \times \frac{c}{d}\right)+\left(\frac{a}{b} \times \frac{e}{f}\right)$ and $\frac{\mathrm{a}}{\mathrm{b}} \times\left(\frac{\mathrm{c}}{\mathrm{d}}-\frac{\mathrm{e}}{\mathrm{f}}\right)=\left(\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{c}}{\mathrm{d}}\right)-\left(\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{e}}{\mathrm{f}}\right)$ (Distributive property of multiplication over addition and subtraction)
(V) If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ be two rational number then $\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{c}}{\mathrm{d}} \mathrm{p}$ a $\times \mathrm{d}=\mathrm{b} \times \mathrm{c}$
(VI) Absolute value of a rational number

RECIPROCAL OR MULTIPLICATIVE INVERSE AND ADDITIVE INVERSE

(i) Reciprocal : Every non-zero rational number $\frac{\mathrm{a}}{\mathrm{b}}$ has its multiplicative inverse $\frac{\mathrm{b}}{\mathrm{a}}$

Thus $\left(\frac{a}{b} \times \frac{b}{a}\right)=\left(\frac{b}{a} \times \frac{a}{b}\right)=1 \triangleright \frac{b}{a}$ is called the reciprocal of $\frac{a}{b}$
(ii) Multiplicative inverse : We denote the reciprocal of $\frac{a}{b}$ by $\left(\frac{a}{b}\right)^{-1}$ Clearly $\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}$
(iii) Additive Inverse : For every rational number $\frac{\mathrm{a}}{\mathrm{b}}$, there exists a rational number $\frac{-\mathrm{a}}{\mathrm{b}}$
such that $\quad\left(\frac{a}{b}+\frac{-\mathbf{a}}{\mathbf{b}}\right)=\frac{\mathbf{a}+(-\mathbf{a})}{\mathbf{b}}=\frac{\mathbf{0}}{\mathbf{b}}=0$ and $\left(-\frac{\mathbf{a}}{\mathbf{b}}+\frac{\mathbf{a}}{\mathbf{b}}\right)=0$

$$
-\frac{\mathbf{a}}{\mathbf{b}} \text { is called the additive inverse of } \frac{a}{b}
$$

Ex. $\quad\left(\frac{4}{7}+\frac{-4}{7}\right)=\frac{\{4+(-4)\}}{7}=\frac{0}{7}=0$ and similarly, $\left(\frac{-4}{7}+\frac{4}{7}\right)=0$
1 $\left(\frac{4}{7}+\frac{-4}{7}\right)=\left(\frac{-4}{7}+\frac{4}{7}\right)=0$
Thus, $\frac{4}{7}$ and $\frac{-4}{7}$ are additive inverses of each other.
Ex. Find the Reciprocal of -3 and $\frac{-8}{9}$, since

$$
\left(-3 \times \frac{-1}{3}\right)=\left(\frac{-3}{1} \times \frac{-1}{3}\right)=\frac{(-3) \times(-1)}{1 \times 3}=\frac{3}{3}=1
$$

and Reciprocal of $\frac{-8}{9}$ is $\frac{-9}{8}$, since $\left(\frac{-8}{9} \times \frac{-9}{8}\right)=\left(\frac{-9}{8} \times \frac{-8}{9}\right)=1$
Ex. Find the additive inverse of :
(a) $\frac{5}{9}$
(b) $\frac{-15}{8}$
(c) $\frac{-6}{-7}$

Sol. (a) Additive inverse of $\frac{5}{9}$ is $\frac{-5}{9}$
(b) Additive inverse of $\frac{-15}{8}$ is $\frac{15}{8}$
(c) We may write, $\frac{-6}{-7}=\frac{(-7) \times(-1)}{(-7)}=\frac{6}{7}$. Hence, its additive inverse is $\frac{-6}{7}$

DO YOUR SELF

Write the additive inverse of (a) $\frac{-10}{31}$
(b) $\frac{4}{-15}$
(c) $\frac{-2}{-7}$
(d) $\frac{15}{9}$

Find the reciprocal of each of the following : (a) 12 (b) -8
$\begin{array}{ll}\text { (c) } \frac{5}{16} & \text { (d) } \frac{-14}{17}\end{array}$
(e) $\frac{0}{2}$

ADDITIVE IDENTITY AND MULTIPLICATIVE IDENTITY

(i) Additive identity : 0 is a rational number such that the sum of any rational number and 0 is the rational number it self.

Thus $\left(\frac{\mathbf{a}}{\mathbf{b}}+\mathbf{0}\right)=\left(\mathbf{0}+\frac{\mathbf{a}}{\mathbf{b}}\right)=\frac{\mathbf{a}}{\mathbf{b}}$, for every rational number $\frac{\mathrm{a}}{\mathrm{b}}$
$\mathbf{0}$ is called the additive identity for rationals.
(ii) Multiplicative Identity : For any rational number $\frac{a}{b}$, we have $\left(\frac{a}{b} \times 1\right)=\left(1 \times \frac{a}{b}\right)=\frac{a}{b}$

1 is called the multiplicative identity for rationals.

Ex. (i) $\left(\frac{3}{5}+0\right)=\left(\frac{3}{5}+\frac{0}{5}\right)=\frac{3}{5}$ and similarly, $\left(0+\frac{3}{5}\right)=\frac{3}{5}$

$$
\backslash \quad\left(\frac{3}{5}+0\right)=\left(0+\frac{3}{5}\right)=\frac{3}{5}
$$

(ii) $\left(\frac{-2}{3}+0\right)=\left(\frac{-2}{3}+\frac{0}{3}\right)=\frac{(-2+0)}{3}=\frac{-2}{3}$ and similarly, $\left(0+\frac{-2}{3}\right)=\frac{-2}{3}$
$\ \quad\left(\frac{-2}{3}+0\right)=\left(0+\frac{-2}{3}\right)=\frac{-2}{3}$
Ex. (i) Consider the rational number $\frac{3}{4}$. Then, we have

$$
\begin{aligned}
& \left(\frac{3}{4} \times 1\right)=\left(\frac{3}{4} \times \frac{1}{1}\right)=\frac{(3 \times 1)}{(4 \times 1)}=\frac{3}{4} \text { and }\left(1 \times \frac{3}{4}\right)=\left(\frac{1}{1} \times \frac{3}{4}\right)=\frac{(1 \times 3)}{(1 \times 4)}=\frac{3}{4} . \\
& \\
& \left(\frac{3}{4} \times 1\right)=\left(1 \times \frac{3}{4}\right)=\frac{3}{4}
\end{aligned}
$$

(ii) Consider the rational number $\frac{-9}{13}$. Then, we have

$$
\frac{-9}{13} \times 1=\left(\frac{-9}{13} \times \frac{1}{1}\right)=\frac{(-9) \times 1}{13 \times 1}=\frac{-9}{13} . \quad \text { and }\left(1 \times \frac{-9}{13}\right)=\left(\frac{1}{1} \times \frac{-9}{13}\right)=\frac{(1) \times(-9)}{1 \times 13}=\frac{-9}{13}
$$

PROPERTIES OF ADDITION, SUBTRACTION, MULTIPLICATION \& DIVISION OF RATIONAL NUMBER

Properties	Addition	Subtraction	Multiplicatio n	Divis io n
Closure property	$(x+y)$ is always a rationalnumber	$(x-y)$ is always a rationalnumber	$x \times y$ is always a rationalnumber	$x \div y$ and $y \neq 0$ then is always a rationalnumber
Commutative property	$x+y=y+x$	$(x-y) \neq(y-x)$	$x \times y=y \times x$	$x \div y \neq y \div x$
Associative property	$x+(y+z)=(x+y)+z$	$x-(y-z) \neq(x-y)-z$	$x \times(y \times z)=(x \times y) \times z$	$x \div(y \div z) \neq(x \div y) \div z$

Note : $x, y \& z$ are rational numbers.
(-) ADDITION OF RATIONAL NUMBERS: We define $\left(\frac{a}{b}+\frac{c}{b}\right)=\frac{a+c}{b}$
Ex. Find the sum :
(i) $\frac{7}{9}+\frac{-11}{9}$
(ii) $\frac{8}{-11}+\frac{3}{11}$

Sol. Wehave

Downloaded from https:// www.studiestoday.com

(i) $\frac{7}{9}+\frac{-11}{9}=\frac{7+(-11)}{9}=\frac{-4}{9}$.
(ii) $\frac{8}{-11}=\frac{8 \times(-1)}{(-11) \times(-1)}=\frac{-8}{11}$.

PROPERTIES OF ADDITION OF RATIONAL NUMBERS

(a) (Closure property) : The sum of two rational numbers is always a rational number. If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ are any two rational numbers, then $\left(\frac{\mathbf{a}}{\mathbf{b}}+\frac{\mathbf{c}}{\mathbf{d}}\right)$ is also a rational number.
Ex. Consider the rational number $\frac{1}{3}$ and $\frac{3}{4}$. Then
Sol. $\left(\frac{1}{3}+\frac{3}{4}\right)=\left(\frac{4+9}{12}\right)=\frac{13}{12}$, which is a rational number.
Ex. Consider the rational number $\frac{-2}{3}$ and $\frac{4}{5}$. Then,
Sol. $\left(\frac{-2}{3}+\frac{4}{5}\right)=\frac{(-10+12)}{15}=\frac{2}{15}$, which is a rational number.
(b) (Commutative law) : Two rational numbers can be added in any order. Thus for any two rational numbers $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$, we have $\left(\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathbf{c}}{\mathrm{d}}\right)=\left(\frac{\mathbf{c}}{\mathrm{d}}+\frac{\mathrm{a}}{\mathrm{b}}\right)$

Ex. (i) $\left(\frac{1}{2}+\frac{3}{4}\right)=\frac{(2+3)}{4}=\frac{5}{4}$ and $\left(\frac{3}{4}+\frac{1}{2}\right)=\frac{(3+2)}{4}=\frac{5}{4}$
\ $\left(\frac{1}{2}+\frac{3}{4}\right)=\left(\frac{3}{4}+\frac{1}{2}\right)$.
(ii) $\frac{-1}{2}+\frac{-2}{3}=\frac{(-3)+(-4)}{6}=\frac{-7}{6}$ and $\left(\frac{-2}{3}+\frac{-1}{2}\right)=\left\{\frac{\{(-4)+(-3))}{6}\right\}=\frac{-7}{6}$

। $\left(\frac{-1}{2}+\frac{-2}{3}\right)=\left(\frac{-2}{3}+\frac{-1}{2}\right)$ P LHS $=$ RHS
(c) (Associative law) : While adding three rational numbers, they can be grouped in any order. thus for any three rational number $\frac{a}{b}, \frac{c}{d}$ and $\frac{e}{f}$ we have $\left(\frac{a}{b}+\frac{\mathbf{c}}{d}\right)+\frac{e}{f}=\frac{a}{b}+\left(\frac{\mathbf{c}}{\mathbf{d}}+\frac{\mathbf{e}}{f}\right)$

Ex. Consider three rational numbers $\frac{-2}{3}, \frac{5}{7}$ and $\frac{1}{6}$ then,
Sol. $\left\{\left(\frac{-2}{3}+\frac{5}{7}\right)+\frac{1}{6}\right\}=\left\{\frac{(-14+15)}{21}+\frac{1}{6}\right\}=\left(\frac{1}{21}+\frac{1}{6}\right)=\frac{(2+7)}{42}=\frac{9}{42}=\frac{3}{14}$
and $\left\{\frac{-2}{3}+\left(\frac{5}{7}+\frac{1}{6}\right)\right\}=\left[\frac{-2}{3}+\frac{(30+7)}{42}\right]=\left[\frac{-2}{3}+\frac{37}{42}\right]=\frac{(-28+37)}{42}=\frac{9}{42}=\frac{3}{14}$

Downloaded from https:// www.studiestoday.com

I $\left\{\left(\frac{-2}{3}+\frac{5}{7}\right)+\frac{1}{6}\right\}=\left\{\frac{-2}{5}+\left(\frac{5}{7}+\frac{1}{6}\right)\right\}$ D LHS $=$ RHS
(-) SUBTRACTION OF RATIONAL NUMBERS :
For rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, we define $\left(\frac{a}{b}-\frac{\mathbf{c}}{\mathbf{d}}\right)=\frac{\mathbf{a}}{\mathbf{b}}+\left(\frac{-\mathbf{c}}{\mathbf{d}}\right)=\frac{\mathbf{a}}{\mathbf{b}}+\left(\right.$ additive inverse of $\left.\frac{\mathbf{c}}{\mathbf{d}}\right)$
Ex. (i) Subtract $\frac{3}{4}$ from $\frac{2}{3}$ (ii) Subtract $\frac{-5}{7}$ from $\frac{-2}{5}$
Sol. (i) $\left(\frac{2}{3}-\frac{3}{4}\right)=\frac{2}{3}+\left(\right.$ additive inverse of $\left.\frac{3}{4}\right)=\left(\frac{2}{3}+\frac{-3}{4}\right)=\frac{\{8+(-9)\}}{12}=\frac{-1}{12}$
(ii) $\left\{\frac{-2}{5}-\left(\frac{-5}{7}\right)\right\}=\frac{-2}{5}+\left(\right.$ additive inverse of $\left.\frac{-5}{7}\right)$

$$
\begin{aligned}
& =\left(\frac{-2}{5}+\frac{5}{7}\right) \quad\left[\text { Q additive inverse of } \frac{-5}{7} \text { is } \frac{5}{7}\right] \\
& =\frac{(-14+25)}{35}=\frac{11}{35}
\end{aligned}
$$

Ex. The sum of two rational numbers is $\mathbf{- 5}$. If one of them is $\frac{-13}{6}$. Find the other
Sol. Let the other number be x. Then,

PROPERTIES OF SUBTRACTION OF RATIONAL NUMBERS

(a) (Closure property) : If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ are any two rational numbers, then $\frac{\mathrm{a}}{\mathrm{b}}-\frac{\mathrm{c}}{\mathrm{d}}$ is a rational number.

Ex. Consider the rational number $\frac{2}{3}$ and $\frac{1}{5}$
Sol. $\frac{2}{3}-\frac{1}{5}=\frac{10-3}{15}=\frac{7}{15}$
(b) (Commutative law) : The subtraction of rational numbers is not always commutative. That is for any two rational number $\frac{a}{b}$ and $\frac{c}{d}$. We have $\frac{a}{b}-\frac{c}{d}+\frac{c}{d}-\frac{a}{b}$

Ex. $\frac{2}{3}-\frac{1}{4}+\frac{1}{4}-\frac{2}{3}$

Downloaded from https:// www.studiestoday.com

Sol. $\frac{2}{3}-\frac{1}{4}=\frac{8-3}{12}=\frac{5}{12} \quad$ ค $\frac{1}{4}-\frac{2}{3}=\frac{3-8}{12}=\frac{-5}{12}$ P $\frac{2}{3}-\frac{1}{4}+\frac{1}{4}-\frac{2}{3}$
$p \frac{5}{12} \neq-\frac{5}{12}$ (Subtraction is not commutative for rational numbers.) LHS ${ }^{1}$ RHS
Ex. $\frac{2}{5}-\frac{3}{4}+\frac{3}{4}-\frac{2}{5}$ ค $\frac{2}{5}-\frac{3}{4}=\frac{8-15}{20}=\frac{-7}{20}$ ค $\frac{3}{4}-\frac{2}{5}=\frac{15-8}{20}=\frac{7}{20}$
$\frac{2}{5}-\frac{3}{4}+\frac{3}{4}-\frac{2}{5} \mathrm{p}-\frac{7}{20} \neq \frac{7}{20}$ (Subtraction is not commutative for rational numbers.)
(c) (Associative law) : The subtraction of rational number is not associative i.e. for any three rational numbers $\frac{a}{b}, \frac{c}{d}$ and $\frac{e}{f}$ we have $\left(\frac{a}{b}-\frac{c}{d}\right)-\frac{e}{f}+\frac{a}{b}-\left(\frac{c}{d}-\frac{e}{f}\right)$

Ex. $\left(\frac{2}{3}-\frac{4}{5}\right)-\frac{1}{2}=\left(\frac{10-12}{15}\right)-\frac{1}{2}$ P $\quad \frac{-2}{15}-\frac{1}{2}=\frac{-4-15}{30}=\frac{-19}{30}$
$\frac{2}{3}-\left(\frac{4}{5}-\frac{1}{2}\right)=\frac{2}{3}-\left(\frac{8-5}{10}\right) \quad$ ค $\quad \frac{2}{3}-\frac{3}{10}=\frac{20-9}{30}=\frac{11}{30}$

P $\left(\frac{2}{3}-\frac{4}{5}\right)-\frac{1}{2}, \frac{2}{3}-\left(\frac{4}{5}-\frac{1}{2}\right)$ (Subtraction is not associative for rational numbers.)
(d) (Existence of right Identity) : The rational number 0 is the right identity. That is, for any rational number $\frac{\mathbf{a}}{b}$, we have $\frac{\mathbf{a}}{\mathbf{b}}-\mathbf{0}=\frac{\mathbf{a}}{b}$

Ex. $\frac{3}{5}-0=\frac{3}{5}$

-) MULTIPLICATION OF RATIONAL NUMBER :

For any two rational numbers $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$, we define: $\left(\frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{c}}{\mathbf{d}}\right)=\left(\frac{\mathbf{a} \times \mathbf{c}}{\mathbf{b} \times \mathbf{d}}\right)$

Ex. $\begin{array}{ll}\text { (i) } \frac{2}{3} \times \frac{-5}{7} & \text { (ii) } \frac{-7}{8} \times \frac{3}{5}\end{array}$
Sol. We have :
(i) $\frac{2}{3} \times \frac{-5}{7}=\frac{2 \times(-5)}{3 \times 7}=\frac{-10}{21}$
(ii) $\frac{-7}{8} \times \frac{3}{5}=\frac{(-7) \times 3}{8 \times 5}=\frac{-21}{40}$

Ex.
(i) $\frac{-3}{7} \times \frac{14}{5}$
(ii) $\frac{13}{6} \times \frac{-18}{91}$

Sol. We have:

Downloaded from https:// www.studiestoday.com

(i) $\frac{-3}{7} \times \frac{14}{5}=\frac{(-3) \times 14}{7 \times 5}=\frac{-6}{5}$
(ii) $\frac{13}{6} \times \frac{-18}{91}=\frac{13 \times(-18)}{6 \times 91}=\frac{-3}{7}$

PROPERTIES OF MULTIPLICATION OF RATIONAL NUMBERS

(a) (Closure Property) : The product of two rational numbers is always a rational number.

If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ are any two rational numbers than $\left(\frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{c}}{\mathbf{d}}\right)$ is also a rational number.
Ex. (i) Consider the rational numbers $\frac{1}{2}$ and $\frac{5}{7}$. Then,

$$
\left(\frac{1}{2} \times \frac{5}{7}\right)=\frac{(1 \times 5)}{(2 \times 7)}=\frac{5}{14}, \text { which is a rational number. }
$$

(ii) Consider the rational numbers $\frac{-3}{7}$ and $\frac{5}{14}$. Then,

$$
\left(\frac{-3}{7} \times \frac{5}{14}\right)=\frac{(-3) \times 5}{7 \times 14}=\frac{-15}{98}, \text { which is a rational number. }
$$

(b) (Commutative law) : Two rational numbers can be multiplied in any order. Thus, for any rational number $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$. We have $\left(\frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{c}}{\mathbf{d}}\right)=\left(\frac{\mathbf{c}}{\mathbf{d}} \times \frac{\mathbf{a}}{\mathbf{b}}\right)$

Ex. (i) Let us consider the rational numbers $\frac{3}{4}$ and $\frac{5}{7}$. Then,

$$
\begin{aligned}
\left(\frac{3}{4} \times \frac{5}{7}\right) & =\frac{(3 \times 5)}{(4 \times 7)}=\frac{15}{28} \text { and }\left(\frac{5}{7} \times \frac{3}{4}\right)=\frac{(5 \times 3)}{(7 \times 4)}=\frac{15}{28} \\
1 \quad\left(\frac{3}{4} \times \frac{5}{7}\right) & =\left(\frac{5}{7} \times \frac{3}{4}\right) \bigcirc \text { LHS }=\text { RHS }
\end{aligned}
$$

(ii) Let us consider the rational numbers $\frac{-2}{5}$ and $\frac{6}{7}$. Then,

$$
\begin{aligned}
& \left(\frac{-2}{5} \times \frac{6}{7}\right)=\frac{(-2) \times(6)}{5 \times 7}=\frac{-12}{35} \text { and }\left(\frac{6}{7} \times \frac{-2}{5}\right)=\frac{6 \times(-2)}{7 \times 5}=\frac{-12}{35} \\
& \left(\frac{-2}{5} \times \frac{6}{7}\right)=\left(\frac{6}{7} \times \frac{-2}{5}\right) \quad \text { P LHS }=\text { RHS }
\end{aligned}
$$

(c) (Associative law) : While multiplying three or more rational numbers, they can be grouped in any order.

Thus, for any rational numbers $\frac{\mathrm{a}}{\mathrm{b}}, \frac{\mathrm{c}}{\mathrm{d}}$ and $\frac{\mathrm{e}}{\mathrm{f}}$, we have $\left(\frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{c}}{\mathbf{d}}\right) \times \frac{\mathbf{e}}{\mathbf{f}}=\frac{\mathbf{a}}{\mathbf{b}} \times\left(\frac{\mathbf{c}}{\mathbf{d}} \times \frac{\mathbf{e}}{\mathbf{f}}\right)$
Ex. Consider the rational numbers $\frac{-5}{2}, \frac{-7}{4}$ and $\frac{1}{3}$. We have

Sol. $\left(\frac{-5}{2} \times \frac{-7}{4}\right) \times \frac{1}{3}=\left\{\frac{(-5) \times(-7)}{2 \times 4} \times \frac{1}{3}\right\}=\left(\frac{35}{8} \times \frac{1}{3}\right)=\frac{(35 \times 1)}{(8 \times 3)}=\frac{35}{24}$
and $\frac{-5}{2} \times\left(\frac{-7}{4} \times \frac{1}{3}\right)=\frac{-5}{2} \times \frac{(-7) \times 1}{4 \times 3}=\left(\frac{-5}{2} \times \frac{-7}{12}\right)=\frac{(-5) \times(-7)}{(2 \times 12)}=\frac{35}{24}$.
ค $\frac{35}{24}=\frac{35}{24} \quad$ P LHS $=$ RHS
(f) (Distributive law of multiplication over addition):

For any three rational numbers $\frac{\mathrm{a}}{\mathrm{b}}, \frac{\mathrm{c}}{\mathrm{d}}$ and $\frac{\mathrm{e}}{\mathrm{f}}$,
we have $\frac{\mathbf{a}}{\mathbf{b}} \times\left(\frac{\mathbf{c}}{\mathbf{d}}+\frac{\mathbf{e}}{\mathbf{f}}\right)=\left(\frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{c}}{\mathbf{d}}\right)+\left(\frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{e}}{\mathbf{f}}\right)$

Ex. Consider the rational numbers $\frac{-3}{4}, \frac{2}{3}$ and $\frac{-5}{6}$. We have
Sol. $\left(\frac{-3}{4}\right) \times\left\{\frac{2}{3}+\frac{-5}{6}\right\}=\left(\frac{-3}{4}\right) \times\left\{\frac{4+(-5)}{6}\right\}=\left(\frac{-3}{4}\right) \times\left(\frac{-1}{6}\right)=\frac{(-3) \times(-1)}{4 \times 6}=\frac{3}{24}=\frac{1}{8}$
Again, $\left(\frac{-3}{4}\right) \times \frac{2}{3}=\frac{(-3) \times 2}{4 \times 3}=\frac{-6}{12}=\frac{-1}{2}$ and $\left(\frac{-3}{4}\right) \times\left(\frac{-5}{6}\right)=\frac{(-3) \times(-5)}{4 \times 6}=\frac{15}{24}=\frac{5}{8}$
\ $\left(\frac{-1}{2}+\frac{5}{8}\right)=\frac{(-4+5)}{8}=\frac{1}{8}$
Hence, $\left(\frac{-3}{4}\right) \times\left\{\frac{2}{3}+\frac{-5}{6}\right\}=\left\{\left(\frac{-3}{4}\right) \times \frac{2}{3}\right\}+\left\{\left(\frac{-3}{4}\right) \times\left(\frac{-5}{6}\right)\right\}$
(g) (Multiplicative property of 0): For any rational number $\frac{\mathrm{a}}{\mathrm{b}}$,

DO YOUR SELF

Verify the following statements : (a) $\left(\frac{7}{9}-\frac{11}{12}\right)+\frac{2}{3}=\frac{7}{9}-\left(\frac{11}{12}+\frac{2}{3}\right)$ (b) $\frac{3}{4}\left(\frac{2}{3}-\frac{1}{4}\right)=\frac{3}{4} \times \frac{2}{3}-\frac{3}{4} \times \frac{1}{4}$
(c) $\left(\frac{2}{3} \div \frac{3}{-5}\right) \div \frac{1}{2}=\frac{2}{3} \div\left(\frac{3}{-5} \div \frac{1}{2}\right)$
(d) Find $\frac{2}{5} \times \frac{-3}{7}-\frac{1}{14}-\frac{3}{7} \times \frac{3}{5}$

If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ are two rational numbers such that $\frac{\mathrm{c}}{\mathrm{d}}{ }^{1} 0$,
we define $\left(\frac{\mathbf{a}}{\mathbf{b}} \div \frac{\mathbf{c}}{\mathbf{d}}\right)=\left(\frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{d}}{\mathbf{c}}\right)$ when $\frac{\mathbf{a}}{\mathbf{b}}$ is divided by $\frac{\mathbf{c}}{\mathbf{d}}$, then $\frac{\mathbf{a}}{\mathbf{b}}$ is called the dividend; $\frac{\mathbf{c}}{\mathbf{d}}$ is called the divisor and the result is known as quotient.
Ex. Divide,
(i) $\frac{9}{16}$ by $\frac{5}{8}$
(ii) $\frac{-6}{25}$ by $\frac{3}{5}$
(iii) $\frac{11}{24}$ by $\frac{-5}{8}$
(iv) $\frac{-9}{40}$ by $\frac{-3}{8}$

Sol.
(i) $\frac{9}{16} \div \frac{5}{8}=\frac{9}{16} \times \frac{8}{5}=\frac{9 \times 8}{16 \times 5}=\frac{72}{80}=\frac{9}{10}$
(ii) $\frac{-6}{25} \div \frac{3}{5}=\frac{-6}{25} \times \frac{5}{3}=\frac{(-6) \times 5}{25 \times 3}=\frac{-30}{75}=\frac{-2}{5}$
(iii) $\frac{11}{24} \div \frac{-5}{8}=\frac{11}{24} \times \frac{8}{-5}=\frac{11 \times 8}{24 \times(-5)}=\frac{88}{-120}=\frac{-11}{15}$
(iv) $\frac{-9}{40} \div \frac{-3}{8}=\frac{-9}{40} \times \frac{8}{-3}=\frac{(-9) \times 8}{40 \times(-3)}=\frac{-72}{-120}=\frac{3}{5}$

Ex. The product of two numbers is $\frac{-28}{27}$. If one of the numbers is $\frac{-4}{9}$. Find the other.
Sol. Let the other number be x . Then,

$$
x \times \frac{-4}{9}=\frac{-28}{27}
$$

P $\quad x=\frac{-28}{27} \div \frac{-4}{9}=\frac{-28}{27} \times \frac{9}{-4}$
p $\quad \frac{(-28) \times 9}{27 \times(-4)}=\frac{-(28 \times 9)}{-(27 \times 4)}$
P $x=\frac{28 \times 9}{27 \times 4}=\frac{7}{3}$.
Hence, the other number is $\frac{7}{3}$.
Ex. 3 Fill in the blanks : $\frac{27}{16} \div(\ldots .)=.\frac{-15}{8}$

Sol.
Let $\frac{27}{16} \div\left(\frac{a}{b}\right)=\frac{-15}{8}$. Then,
$\frac{27}{16} \times \frac{b}{a}=\frac{-15}{8} \rho \frac{b}{a}=\frac{-15}{8} \times \frac{16}{27}=\frac{-10}{9} \rho \frac{a}{b}=\frac{9}{-10}$
Hence, the missing number is $\frac{-9}{10}$

PROPERTIES OF DIVISION OF RATIONAL NUMBERS

Closure property : If $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ are any two rational numbers such that $\frac{\mathrm{c}}{\mathrm{d}}{ }^{1} 0$ then $\frac{\mathbf{a}}{\mathrm{b}} \div \frac{\mathbf{c}}{\mathrm{d}}$ is also a rational numbers.

Ex. $\frac{-6}{9} \div \frac{15}{-18}$

Sot. We have$\frac{-6}{9} \div \frac{15}{-18}$ $\frac{-6}{9} \times \frac{-18}{15}=\frac{4}{5} . \quad$ (The quotient But also a rational number.) But $\quad \frac{6}{9} \div 0=?$
The answer is not defined, so rational numbers are not closed under division.

(A) For any rational number $\frac{\mathrm{a}}{\mathrm{b}}$, we have
(B) For every non-zero rational number $\frac{\mathrm{a}}{\mathrm{b}}$, We have
$\frac{\mathrm{a}}{\mathrm{b}} \div 1=\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{a}}{\mathrm{b}} \div(-1)=\frac{-\mathrm{a}}{\mathrm{b}}$
(i) $\frac{\mathrm{a}}{\mathrm{b}} \div \frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{b}}{\mathrm{a}}=1$
(ii) $\frac{\mathrm{a}}{\mathrm{b}} \div\left(\frac{-\mathrm{a}}{\mathrm{b}}\right)=\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{b}}{-\mathrm{a}}=-1$

Remark : The division of rational number is neither commutative nor associative.

REPRESENTATION OF RATIONAL NUMBERS ON THE NUMBER LINE

We have learnt how to represent integers on the number line.
Draw any line. Take a point O on it. Call it 0 (zero). Set of equal distances on the right as well as on the left of O. Such a distance is known as a unit length. Clearly, the points A, B, C, D represent the integers $1,2,3,4$ respectively and the point $A^{\prime}, B^{\prime}, C^{\prime} D^{\prime}$ represent the integers $-1,-2,-3,-4$ respectively

E	D	C	B'	A'	O	A	B	C	D	E	
-5	4	-3	-2	-1	0		2	3	4	5	

Thus, we may represent any integer by a point on the number line. Clearly, every positive integer lies to the right of O and every negative integer lies to the left of O.
Similarly we can represent rational numbers.
Ex. Represent $\frac{1}{2}$ and $-\frac{1}{2}$ on the number line.
Sol. Draw a line. Take a point O on it. Let it represent 0 . Set off unit length $O A$ and $O A$ ' to the right as well as to the left of O.
The, A represents the integer 1 and A^{\prime} represents the integer -1 .

Now, divide OA into two equal parts. Let OP be the first part out of these two parts.
Then, the point P represents the rational number $\frac{1}{2}$.
Again, divide OA' into two equal parts. Let OP' be the first part out of these 2 parts. Then the point P^{\prime} represents the rational number $-\frac{1}{2}$
Ex. Represent $\frac{4}{7}$ on number line.
Sol. Divide the line segment between 0 and 1 into 7 equal parts (because $\frac{4}{7}$ lies between 0 and 1)

Ex. Represent $\frac{-9}{5}$ on number line.

Downloaded from https:// www.studiestoday.com

Divide the line segment between -1 and -2 (because $-1 \frac{4}{5}$ lies between -1 and -2) into 5 equal parts

COMPETITION WINDOW

(ii) Non terminating \& repeating decimals : Visualize $4 . \overline{26}$ on the number line, up to 4 decimals places. $4 . \overline{26}=4.262626 \ldots$

DO YOUR SELF
Represent each of the following numbers on the number line :
(i) $\frac{-1}{3}$
(ii) $\frac{-3}{4}$
(iii) $-1 \frac{2}{3}$
(iv) $\frac{17}{6}$
(v) -3
(vi) $\frac{23}{5}$

FINDING RATIONAL NUMBER BETWEEN TWO NUMBERS
(A) $1^{\text {st }}$ method : Find a rational number between x and y then, $\frac{x+y}{2}$ is a rational number lying between x and y.
(B) $\quad 2^{\text {nd }}$ method : Find n rational number between x and y (when x and y is non fraction number) then we use formula.

$$
\frac{x(n+1)}{n+1}, \frac{y(n+1)}{n+1}
$$

(C) $3^{\text {rd }}$ method : Find n rational number between x and y (when x and y is fraction Number) then we use formula

$$
d=\frac{(y-x)}{n+1}
$$

then n rational number lying between x and y are $(x+d),(x+2 d),(x+3 d) \ldots . .(x+n d)$

Remark : $\quad x=$ First Rational Number, $y=$ Second Rational Number, $n=$ No. of Rational Number
Ex. Find one rational number between $\frac{1}{3}$ and $\frac{1}{2}$
Sol. $x=\frac{1}{3} ; y=\frac{1}{2} p \frac{x+y}{2}=\frac{\frac{1}{3}+\frac{1}{2}}{2}=\frac{2+3}{6 \times 2}=\frac{5}{12}$

Ex Find 4 rational numbers between 4 and 5 .

Sol. $x=4, y=5, n=4$
$\frac{\mathbf{x} \times(\mathbf{n}+1)}{\mathbf{n}+1}=\frac{4 \times(4+1)}{4+1}=\frac{4 \times 5}{5}=\frac{20}{5}$
$\frac{\mathbf{y} \times(\mathbf{n}+\mathbf{1})}{\mathbf{n}+1}=\frac{5 \times(4+1)}{4+1}=\frac{5 \times 5}{5}=\frac{25}{5}$
$\frac{20}{5},\left[\frac{21}{5}, \frac{22}{5}, \frac{23}{5}, \frac{24}{5}\right], \frac{25}{5}$
Ex Find 3 rational number between $\frac{6}{5}, \frac{7}{5}$
Sol. $x=\frac{6}{5}, y=\frac{7}{5}, n=3$
$\mathbf{d}=\left(\frac{y-x}{n+1}\right)=\frac{\frac{7}{5}-\frac{6}{5}}{3+1}=\left(\frac{\frac{7-6}{5}}{4}\right)=\left(\frac{1}{20}\right)$
$\mathbf{x}+\mathbf{d}=\frac{6}{5}+\frac{1}{20}=\frac{24+1}{20}=\frac{25}{20}$
$x+2 d=\frac{6}{5}+2 \times \frac{1}{20}=\frac{24+2}{20}=\frac{26}{20}$
$x+3 d=\frac{6}{5}+\frac{3}{20}=\frac{24+3}{20}=\frac{27}{20}$
$\frac{24}{20},\left[\frac{25}{20}, \frac{26}{20}, \frac{27}{20}\right], \frac{28}{20}$

DO YOUR SELF

(i) Find a rational number between -2 and 6 .
(ii) Find 29 rational numbers between $\frac{-2}{5}$ and $\frac{1}{5}$
(iii) Insert 5 rational numbers between $-\frac{1}{3}$ and $\frac{1}{2}$
(iv) Find two rational numbers between -3 and -2 .

అ ఔ ఒ もఇ వి ఖీ వి ఖీ ఔ ఓ థ్వ ఓ ఆ ఔ థ゙

$$
\left\lvert\, \Phi=\left\{\begin{array}{c}
x \text { if } x \geq 0 \\
-x \text { if } x<0
\end{array}\right.\right.
$$

ఇ．ס．$|\square 7|=7,|3|=3$ ，జొఖి．
$0 ట, \odot, \quad ఒ ひ ి \Phi\{\{\square \square \Phi\}=\mid \Phi$
ఒఝై$\square \square=\mid \Phi$
ఒยఆజ $\sqrt{(\mathrm{x})^{2}}=\mid \Phi$

（土） \mid ひิ｜$=\mid \square$ ひิ｜
（山） \mid జิழ｜＝｜ชิ｜｜ \mid
（ఋ）$\quad\left|\frac{\mathrm{a}}{\mathrm{b}}\right|=\frac{|\mathrm{a}|}{|\mathrm{b}|}$

DO YOUR SELF

గిజీజిథి ణు，జిణ｜థ＋థ｜$\leq|\Phi+|థ|$ జిఱి \square
$\begin{array}{ll}\text {（3）} \Phi=\frac{-9}{7}, \Phi=\frac{3}{4} & \text {（د）} \Phi=\frac{8}{-3}, \Phi=\frac{-7}{9}\end{array}$
तిజ్మిజిథ ణు，జిణ $\mid \Phi{ }_{\circ}$ 甲｜$=\left|\Phi{ }_{\odot}\right| థ \mid$ జిత్య
（0）$甲=\frac{3}{4}, 甲=\frac{-1}{2}$
（د）$\Phi=\frac{-7}{8}, \Phi=\frac{1}{-4}$

ఇ甲 $\frac{3}{4}=0.75, \frac{8}{10}=0.8, \frac{1}{4}=0.25$

ఇq $\frac{8}{3}=2.666 \ldots=2 . \overline{6}$

Downloaded from https：／／www．studiestoday．com

Downloaded from https：／／www．studiestoday．com

 జజ్ిటటబి టీ，

ఆఖఖఇఅఖి ఒఇఖిలుฎఙఆ

$\left(\frac{\mathbf{p}}{\mathbf{q}}\right)$ form $=\frac{\text {（Complete numbers）}-(\text { numberformed by Non－repeating digit）}}{\text { No．of9 as no．of repeating digits after that write no．of } 0 \text { as no．of non repeating digits．}}$
ఇゅ．（ง）
$0 . \overline{35}=\frac{35-0}{99}=\frac{35}{99}$
（ふ） $0.4 \overline{35}=\frac{435-4}{990}=\frac{431}{990}$
（凶） $23 . \overline{43}=\frac{2343-23}{99}=\frac{2320}{99}$

య๘ట．ఎజఱ థ＝ $23 . \overline{43}$ ขి，జీి，
$\Rightarrow \Phi=23.434343 \ldots$

$$
100 \Phi=2343.4343 \ldots
$$

（凶）

$$
100 \Phi \square \Phi=(2343.4343 \ldots) \square(23.4343 \ldots)
$$

$\Rightarrow 99 \Phi=2320$
$\Rightarrow 甲=\frac{2320}{99}$

戸జ $৩, ఙ{ }^{〔} \approx$

$$
23 . \overline{43}=23+0 . \overline{43}
$$

$\Rightarrow \quad 23 . \overline{43}=\frac{23 \times 99+43}{99}$

$$
=\frac{2277+43}{99}=\frac{2320}{99}
$$

 జ Јヨ্̧ Јఠట ．

2ఠట．จిు，$p, ~ ి ి జ ~ ు, జ ి ~ ఔ ు ~$
$\frac{2}{7}=2$ 。 $\frac{1}{7}=0 . \overline{285714}$
$\frac{3}{7}=3 \cdot \frac{1}{7}=0 . \overline{428571}$
$\frac{4}{7}=4 \odot \frac{1}{7}=0 . \overline{571428} \quad ; \quad \frac{5}{7}=5 \odot \frac{1}{7}=0 . \overline{714285}$

Downloaded from https:// www.studiestoday.com

 ఒిటిజ ๘ $=0$.
æ 2

 ట్రటెణఠటిజ్

 $\left[\mathrm{Q}(\sqrt[3]{\mathrm{a}})^{3}+(\sqrt[3]{\mathrm{b}})^{3}\right]=\mathrm{a}+\mathrm{b}$ ఆฺభి, , థిఙిణฮటిబిట.

(ง) $\sqrt{10}$
(3) $\sqrt{162}$
((1)) $\sqrt[3]{4}$
(ङ) $\sqrt[3]{16}$

20ట. (ง) $\sqrt{10}$

(w) $\sqrt{162}$

ขజిణజటిజిటషబిం జిజిఢిణఁత జ $\sqrt{2}, \sqrt{2}$

(()) $\sqrt[3]{4}$
$\Rightarrow \sqrt[3]{4}$ 。 $\sqrt[3]{4^{2}}=\sqrt[3]{4^{3}}=4$

(3) $\sqrt[3]{16}$

ขభలిటజ్థొ జితిట ๔ి $\sqrt[3]{16}, 2 \sqrt[3]{2}$

Downloaded from https：／／www．studiestoday．com

ఇ甲（土）$\frac{189}{125}=\frac{189}{5^{3}}=\frac{189}{2^{0} \times 5^{3}}$.

（山）$\frac{17}{6}=2.83333 \ldots \ldots$

（山）$\frac{17}{8}=\frac{17}{2^{3} \times 5^{0}}$

（3）$\frac{64}{455}=\frac{64}{5 \times 7 \times 13}$
 โి జిజిఁిణฝీం）

Downloaded from https：／／www．studiestoday．com

SOLVED EXAMPLES

（i）$\frac{x}{4}, \frac{16}{12}$
（a）$\frac{-4}{5}, \frac{x}{10}$
2003.

$$
\text { (د) } \begin{aligned}
& \frac{x}{4}=\frac{16}{12} \\
& \Rightarrow 甲 \odot 12=4 \circ 16 \\
& \Rightarrow \Phi=\frac{4 \times 16}{12}=\frac{16}{3}
\end{aligned}
$$

（ سలmటి ）
（ఢ甲 ழిడిథ ఠిడిజజఙభిణ ఐిశో
（๗）$\frac{-4}{5}=\frac{x}{10}$

$$
\Rightarrow 5_{\odot} \Phi=(\square 4){ }_{\odot} 10 \quad \Rightarrow \Phi=\frac{-4 \times 10}{5}=\square 8
$$

ఇ甲． 2 อజజ $\frac{7}{9}$ ๕ిటిజ $\frac{-12}{9}$
20ట．戸జ ৩，ఒి ङ，

$$
\frac{7}{9}+\frac{-12}{9}=\frac{7+(-12)}{9}=\frac{-5}{9} \quad[\rightarrow 7+(\square 12)=\square 5]
$$

ఐఅఒ ๔్జి 4 జిటిజ $6=12$ ．
$\therefore \frac{3}{-4}=\frac{(-3) \times 3}{4 \times 3}=\frac{-9}{12}$ ఒิటిజ $\frac{-5}{6}=\frac{(-5) \times 2}{6 \times 2}=\frac{-10}{12}$
అటజజిడిటథ，$\frac{-9}{12}>\frac{-10}{12}$ ．ల๐జటిథిజ，$\frac{3}{-4}>\frac{-5}{6}$
ఇ甲． 4 ฉผอటైిథ ：$\frac{-8}{-15}+\frac{4}{-3}$
20ట．

$$
\frac{8}{-15}+\frac{4}{-3}=\frac{-8}{15}+\frac{-4}{3}
$$

$$
\left[Q \frac{8}{-15}=\frac{8 \times-1}{(-15) \times(-1)}=\frac{-8}{15} \text { and } \frac{4}{-3}=\frac{4 \times-1}{(-3) \times(-1)}=\frac{-4}{3}\right]
$$

ఐఅఒ త్జి 15 జిటిజ 3 ， 15

$$
\begin{aligned}
& \frac{-4}{3}=\frac{-4 \times 5}{3 \times 5}=\frac{-20}{15} \\
\therefore \quad & \frac{-8}{15}+\frac{4}{-3}=\frac{-8}{15}+\frac{-4}{3} \\
& =\frac{-8}{15}+\frac{-20}{15} \\
& =\frac{(-8)+(-20)}{15}=\frac{-28}{15}
\end{aligned}
$$

Downloaded from https：／／www．studiestoday．com

ఇ థ． 5 तิజสమిథ ：$\left(\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{c}}{\mathrm{d}}\right)+\frac{\mathrm{e}}{\mathrm{f}}=\frac{\mathrm{a}}{\mathrm{b}}+\left(\frac{\mathrm{c}}{\mathrm{d}}+\frac{\mathrm{e}}{\mathrm{f}}\right)$ జิఱฺ $\frac{\mathrm{a}}{\mathrm{b}}=\frac{-2}{3}, \frac{\mathrm{c}}{\mathrm{d}}=\frac{5}{7}$ జిటะ $\frac{\mathrm{e}}{\mathrm{f}}=\frac{-1}{6}$

$$
\begin{aligned}
& \left(\frac{\mathrm{a}}{\mathrm{~b}}+\frac{\mathrm{c}}{\mathrm{~d}}\right)+\frac{\mathrm{e}}{\mathrm{f}}=\left(\frac{-2}{3}+\frac{5}{7}\right)+\frac{-1}{6} \Rightarrow \frac{(-2) \times 7+3 \times 5}{21}+\frac{-1}{6}=\frac{(-14)+15}{21}+\frac{-1}{6} \\
& \Rightarrow \frac{1}{21}+\frac{(-1)}{6}=\frac{1 \times 2+(-1) \times 7}{42}=\frac{2+(-7)}{42}=\frac{(-5)}{42}=\frac{-5}{42} \\
& \text { 2ӊటะ, } \frac{\mathrm{a}}{\mathrm{~b}}+\left(\frac{\mathrm{c}}{\mathrm{~d}}+\frac{\mathrm{e}}{\mathrm{f}}\right)=\frac{-2}{3}+\left(\frac{5}{7}+\frac{-1}{6}\right) \Rightarrow \frac{-2}{3}+\frac{5 \times 6+7 \times(-1)}{42}=\frac{-2}{3}+\frac{30+(-7)}{42} \\
& \Rightarrow \frac{(-2)}{3}+\frac{23}{42}=\frac{(-2) \times 14+23 \times 1}{42}=\frac{(-28)+(23)}{42}=\frac{(-5)}{42}=\frac{-5}{42} \\
& \therefore\left(\frac{\mathrm{a}}{\mathrm{~b}}+\frac{\mathrm{c}}{\mathrm{~d}}\right)+\frac{\mathrm{e}}{\mathrm{f}}=\frac{\mathrm{a}}{\mathrm{~b}}+\left(\frac{\mathrm{c}}{\mathrm{~d}}+\frac{\mathrm{e}}{\mathrm{f}}\right)
\end{aligned}
$$

$$
\therefore \quad \frac{-5}{7} \square\left(\frac{-3}{8}\right)=\frac{-5}{7}+\frac{3}{8}=\frac{(-5) \times 8+3 \times 7}{56}=\frac{-40+21}{56}=\square \frac{19}{56}
$$

$$
\begin{aligned}
& \frac{-5}{8}+\Phi=\frac{5}{9} \\
& \Rightarrow \Rightarrow \quad \Phi=\frac{5}{9} \square\left(\frac{-5}{8}\right) \quad\left[\text { Transposing } \frac{-5}{8} \text { to RHS }\right] \\
& \Rightarrow=\frac{5}{9}+\frac{5}{8} \quad \Rightarrow \quad \Phi=\frac{5 \times 8+5 \times 9}{72}=\frac{40+45}{72}=\frac{85}{72}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-3}{4} \square 甲=\frac{5}{6} \quad \Rightarrow \quad \frac{-3}{4} \square \frac{5}{6}=甲 \quad\left[\text { Transposing } x \text { to RHS and } \frac{5}{6} \text { to LHS }\right] \\
& \Rightarrow \Phi=\frac{-3}{4} \square \frac{5}{6} \quad \Rightarrow \Phi=\frac{-3}{4}+\frac{-5}{6} \quad\left[\mathrm{Q}-\frac{5}{6}=\frac{-5}{6}\right] \\
& \Rightarrow \Phi=\frac{(-3) \times 3+(-5) \times 2}{12} \\
& \Rightarrow \Phi=\frac{(-9)+(-10)}{12}=\frac{-19}{12} \quad[7 \quad \text { ఐఅఒ జి } 4 \text { జిటిజ } 6 \text { P 12] }
\end{aligned}
$$

Downloaded from https：／／www．studiestoday．com

ఇ థ． 9 ఇ๙ษటสีใణజ：$\frac{6}{7} \square 2+\frac{-7}{9}+\frac{19}{21}$

7	7,	1,	9,	21
3	1,	1,	9,	3
	1,	1,	3,	1

$=\frac{6}{7}+\frac{(-2)}{1}+\frac{(-7)}{9}+\frac{19}{21}$
\therefore ఐఅఒ $=7$ 。3。3 $=63$
$=\frac{6 \times 9+(-2) \times 63+(-7) \times 7+19 \times 3}{63}$
$=\frac{54+(-126)+(-49)+57}{63}=\frac{111+(-175)}{63}=\frac{-64}{63}$

ఇ థ． 10 2xటొలటజిథి ：
（3）$\frac{-2}{3}+\frac{5}{9} \square \frac{-7}{6}$
（3）$\frac{5}{12}+\frac{-5}{18} \square \frac{7}{24}$
20ట．（Ј）థజ ৩，ఒి ఔ

$$
\begin{aligned}
& \frac{-2}{3}+\frac{5}{9} \square \frac{-7}{6}=\frac{-2}{3}+\frac{5}{9} \square \frac{7}{6} \\
& =\frac{(-2) \times 6+5 \times 2+7 \times 3}{18} \\
& =\frac{-12+10+21}{18}=\frac{-12+31}{18}=\frac{19}{18}
\end{aligned}
$$

$$
\left[\mathrm{Q}-\left(\frac{-7}{6}\right)=\frac{7}{6}\right]
$$

$$
=\frac{(-2) \times 6+5 \times 2+7 \times 3}{18} \quad[\neg \text { ఐఅఒ ๕జ 3, 9, జిటిజ } 6,18]
$$

（山）థజజ ৩，ఒి ఔ

20ట．ม． $212 \frac{1}{3}=\frac{637}{3}$
ழిథ్ తి 1 ట థిటఱ్య．$=\frac{637}{3} \div \frac{49}{4}=\frac{637}{3} \odot \frac{4}{49}=\frac{52}{3}=$ 2．． $17 \frac{1}{3}$
ఇ． 12 బยอటజిథ $\left(\frac{-7}{18} \times \frac{15}{-7}\right) \square\left(1 \times \frac{1}{4}\right)+\left(\frac{1}{2} \times \frac{1}{4}\right)$
20ట．$\left(\frac{-7}{18} \times \frac{15}{-7}\right) \square\left(1 \times \frac{1}{4}\right)+\left(\frac{1}{2} \times \frac{1}{4}\right)=\left(\frac{-7}{18} \times \frac{15}{-7}\right) \square\left(\frac{1}{1} \times \frac{1}{4}\right)+\left(\frac{1}{2} \times \frac{1}{4}\right)$
$=\frac{-7 \times 15}{18 \times-7} \square \frac{1 \times 1}{1 \times 4}+\frac{1 \times 1}{2 \times 4}=\frac{1 \times 5}{6 \times 1} \square \frac{1 \times 1}{1 \times 4}+\frac{1 \times 1}{2 \times 4}$
$=\frac{5}{6} \square \frac{1}{4}+\frac{1}{8}=\frac{5}{6}+\frac{-1}{4}+\frac{1}{8}$

$$
\left[\mathrm{Q}-\frac{1}{4}=\frac{-1}{4}\right]
$$

$=\frac{5 \times 4+(-1) \times 6+1 \times 3}{24}=\frac{20+(-6)+3}{24}=\frac{17}{24}$

$$
\begin{aligned}
& \frac{5}{12}+\frac{-5}{18} \square \frac{7}{24}=\frac{5}{12}+\frac{-5}{18}+\frac{-7}{24} \\
& {\left[Q-\frac{7}{24}=\frac{-7}{24}\right]} \\
& =\frac{5 \times 6+(-5) \times 4+(-7) \times 3)}{72} \\
& =\frac{30+(-20)+(-21)}{72}=\frac{30+(-41)}{72}=\frac{-11}{72} \\
& \text { [} \dagger \text { ఏ ఐఅఒ జిజి } 12,18 \text { జిటిజ } 24 \text { p 72] }
\end{aligned}
$$

Downloaded from https:// www.studiestoday.com

$$
\begin{aligned}
& \frac{-3}{5} \odot\left(-\frac{10}{9}\right) \odot\left(\frac{21}{-4}\right) \circ(\square 6)=\frac{-3}{5} \odot \frac{-10}{9} \odot \frac{21}{-4} \odot \frac{-6}{1} \\
& \Rightarrow \frac{(-3) \times(-10) \times 21 \times(-6)}{5 \times 9 \times(-4) \times 1}=\frac{-(3 \times 10 \times 21 \times 6)}{-(5 \times 9 \times 4 \times 1)}=\frac{3 \times 10 \times 21 \times 6}{5 \times 9 \times 4} \\
& \Rightarrow \frac{1 \times 5 \times 21 \times 6}{5 \times 3 \times 2}=\frac{1 \times 1 \times 7 \times 3}{1 \times 1 \times 1}=21
\end{aligned}
$$

2003.
()) $\frac{3}{5} \div \frac{4}{25}=\frac{3}{5} \circ \frac{25}{4}=\frac{3 \times 25}{5 \times 4}=\frac{3 \times 5}{1 \times 4}=\frac{15}{4}$
(๗) $\frac{-8}{9} \div \frac{4}{3}=\frac{-8}{9} \circ \frac{3}{4}=\frac{-8 \times 3}{9 \times 4}=\frac{-2 \times 1}{3 \times 1}=\frac{-2}{3}$

$=\Phi_{\odot} \frac{14}{27}=\square \frac{28}{81}$
$\Phi=\frac{-(28 \times 27)}{81 \times 14}=\frac{-(2 \times 1)}{3 \times 1}=\frac{-2}{3}$

$=\frac{3}{-14} \odot 甲=\frac{5}{12}$

(0) $\square \frac{7}{48}$
(ஃ) $\frac{1}{24}$
(అ) $\frac{13}{48}$
(अ) $\frac{1}{3}$

(o) $\square \frac{19}{60}$
(ஃ) $\frac{-11}{30}$
(అ) $\frac{51}{60}$
(ఆ) $\frac{1}{20}$

(0) $\frac{-11}{28}$
(ஃ) $\frac{-5}{7}$
(అ) $\frac{9}{-14}$
(अ) $\frac{29}{-42}$

(0) $-\frac{7}{5}$
(ஃ) $\square \frac{13}{5}$
(అ) $\frac{13}{5}$
(ङ) $\frac{7}{5}$

(0) $\frac{-12}{26}$
(ஃ) $\frac{-49}{91}$
(అ) $\frac{-9}{16}$
(अ) $\frac{28}{-105}$

(0) $\frac{-13}{3}$
(\%) $\frac{-19}{3}$
(అ) $\frac{1}{3}$
(ఆ) $\frac{13}{3}$
7. 2ిజ జษటสజి జి $\left(-\frac{9}{16} \times \frac{8}{15}\right)$, :
(o) $\square \frac{3}{10}$
(ஃ) $\square \frac{4}{15}$
(అ) $\square \frac{9}{25}$
(↔) $\square]$

9. 2ัజ 飞๖టสు $\left(\frac{-5}{9} \div \frac{2}{3}\right)$, :-
(0) $\square \frac{5}{2}$
(ஃ) $\square \frac{5}{6}$
(అ) $\square \frac{10}{27}$
(ङ) $\square \frac{6}{5}$
10. ఈ\&
(o) $\square \frac{32}{45}$
(ஃ) $\square \frac{8}{5}$
(అ) $\square \frac{9}{10}$
(ఆ) $\square \frac{5}{6}$

1．గటిర ఒిఠఠడిఠిఠిజిణజ ఠిిఠిజిణఝ జిటిజ．
（））$\square \frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6}$
（3）$\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}$

（3）$\frac{2}{8}$
（3）$\frac{-5}{9}$
（अ）$\frac{-6}{-5}$
（ख）$\frac{2}{-9}$
（ㄹ）$\frac{19}{-6}$

3． กิజ్జిజిథి ణుజిణ $\square(\square థ)=థ$ జిత్మి．
（3）$甲=\frac{11}{15}$
（『）$\Phi=\square \frac{13}{17}$

（3） $\square \quad 13$
（অ）$\frac{-13}{19}$
（（））$\frac{1}{5}$
（ङ）$\frac{-5}{8} \times \frac{-3}{7}$
（ㄹ）\square
$1 \cdot \frac{-2}{5}$
（ब）$\square 1$

（3）$\frac{-4}{5}=1=1 \circ \frac{-4}{5}=$
$\square \frac{4}{5}$
（د）$\square \frac{13}{17} \times \frac{-2}{7}=\frac{-2}{7} \times \frac{-13}{17}$
（®）$\frac{-19}{29} \times \frac{29}{-19}=1$
6．2๔ణణిబిழిణ ：（3）$\frac{2}{5}$ from $\frac{1}{15}$
（د）$\frac{-3}{7}$ from $\frac{12}{14}$
（®）$\frac{-7}{12}$ from $\frac{-5}{18}$

7．खயీటీజిథ ：（د）$\frac{7}{42}-\frac{8}{21}$
（د）$\frac{2}{15}-\frac{-4}{5}$
（『）$\frac{-7}{12}-\frac{-8}{15}$
（コ）$\frac{5}{24}-\frac{-17}{-36}$
（ㄹ）$\frac{-8}{15}-\frac{5}{18}$
（ङ）$\frac{2}{9}-\frac{-5}{12}$

（๖）అజిటి తిజ జઉఔజ 1 ழฺ 0？

（د）$\square \frac{2}{15}-\left(\frac{-7}{12}\right)=\ldots+\frac{7}{12}$

12．2ӊలిటిథ ：（ง）$\left(\frac{2}{3} \times \frac{15}{-16}\right) \square\left(\frac{7}{12} \times \frac{-24}{35}\right) \quad$（د）$\left(\frac{5}{7} \times \frac{-14}{15}\right)+\left(\frac{-8}{15} \times \frac{3}{-16}\right) \square\left(\frac{2}{9} \times \frac{-27}{16}\right)$

13．గిజీజిథి ణుజ జితటటృతిటిం：
（）$\frac{2}{3} \times \frac{5}{6}=\frac{5}{6} \times \frac{2}{3}$
（د）$\frac{-34}{48} \times \frac{16}{17}=\frac{16}{17} \times \frac{-34}{48}$
（®）$\frac{-9}{20} \times \frac{35}{-27}=\frac{35}{-27} \times \frac{-9}{20}$

1. గిజ్మిథి ణుజ జిథటటతికిం: (i) $\frac{2}{3} \times\left(\frac{3}{5} \times \frac{25}{18}\right)=\left(\frac{2}{3} \times \frac{3}{5}\right) \times \frac{25}{18} \quad$ (()) $\frac{14}{15} \times\left(\frac{-3}{12} \times \frac{22}{-33}\right)=\left(\frac{14}{15} \times \frac{-3}{12}\right) \times \frac{22}{-33}$

(3) $\frac{-35}{17} \div 1=\ldots$
(®) $\frac{2}{3} \div \ldots=-\frac{2}{3}$
(®) $\frac{25}{18} \div \frac{-25}{18}=\ldots$
(®) $\frac{18}{17} \div \ldots=1$
()ㅏ $\left(\frac{3}{5}-\frac{1}{2}\right)+\ldots=\frac{3}{5} \div \frac{3}{4}-\frac{1}{2} \div \frac{3}{4} \quad$ (ㅎ) $\frac{5}{6} \div \frac{2}{-3}=\frac{5}{6} \times \ldots$

(a) $\frac{13}{5} \div \frac{26}{10}=\frac{26}{10} \div \frac{13}{5} \quad$ (®) $\left(\frac{5}{9} \div \frac{1}{3}\right) \div \frac{5}{2}=\frac{5}{9} \div\left(\frac{1}{3} \div \frac{5}{2}\right)$

(2) $\left(\frac{8}{15}+\frac{6}{5}\right)-\frac{5}{12}=\frac{8}{15}+\left(\frac{6}{5}-\frac{5}{12}\right)$
(د) $8 \square\left(2 \frac{3}{5}+2 \frac{5}{12}\right)=8$
$\square 2 \frac{3}{5}-2 \frac{5}{12}$
(』) $\frac{5}{2} \square 0$
$0=0$
$\square \frac{5}{2}$

11. నயీటమిథ : $\frac{4}{3}+\frac{3}{5}+\frac{-2}{3}+-\frac{11}{5}$

18 .

23 ．
 8000，0，0，
 జుు ，ుజ，ఠజజీజ？
26．ะథి ణజిఇగకం థ＝$\frac{-3}{4}, ~ థ ి=\frac{2}{3}$ జీటిజ $ద=\frac{-5}{6}$ ，జజమిథి ణ，జిణ ：
（0）$\Phi_{\odot}(\Phi+\omega)=\Phi_{\circ} 甲+\Phi_{\circ} \omega$

（ङ）\uparrow 。 $\omega=\omega_{\circ}$ 甲

Downloaded from https：／／www．studiestoday．com

ఇずఇขఅఖขฐー 1

1．అ
2． 0
3． 0
4．↔
5．๑
6．๒
7． 0
8．：
9．：
10．ஆ

7．（অ）$-\frac{3}{14}$ ，（অ）$\frac{14}{15}$, （অ）$-\frac{1}{20}$ ，（ङ）$-\frac{19}{72}$, （ङ）$-\frac{73}{90}$ ，（ङ）$\frac{23}{36}$
8．（3）$\frac{11}{12}$ ，（د）$\frac{23}{36}$ ，（『）$-\frac{7}{48}$ ，

11．（3）$-\frac{9}{8}$, （अ）$\frac{4}{11}$, （अ）$\frac{3}{4}$, （उ）$-\frac{5}{2}$ ，
12．（3）$-\frac{5}{2}$, （3）$-\frac{9}{40}$ ，

14．（3）$>$ ，（অ）$=$ ，（『）
15．（ง）$-\frac{2}{7}$, （3）$\frac{4}{7}$, （『）$-\frac{3}{8}$
ఇఖఇఖఅఖఖఇー2

3．（3）$-\frac{3}{4}$, （3）$\square 2$ ，（ञ）$\frac{9}{2}$
5．（3）$-\frac{16}{15}$, （3）$-\frac{128}{7}$, （अ）$-\frac{2}{21}$, （ङ）$-\frac{32}{75}$
6．（ఎ）ఈజిటిజ（ゝ）なజిటిజ

22．$\frac{7}{8}$ Litre
23． 60 ๗ట
24． $42 \frac{1}{4}$
25．ఖ． $149 \frac{5}{8}$
27．$\square 15 \quad$ 28．$-\frac{56}{15}$
29． 14 ，પిలి
30．$\frac{7}{4} \quad 31 . \quad 2 . \frac{19}{2}$
32．$\frac{25}{3} \mathrm{~m}$
33．2．$\frac{45}{2}$
34． $159 \frac{1}{2}$
40．$\frac{3}{4}$
41．$\frac{4}{3}$
42．$\frac{8}{3}$
43．$\square \frac{3}{16}$
44．$\frac{3}{4}$
45．$\frac{2}{5}$
46．$\frac{97}{33}$
47．$-1 \frac{11}{15}$
48．$-\frac{7}{5}$
49．$\frac{59}{30}$
50．$\frac{1}{4}$

Downloaded from https:// www.studiestoday.com EXERCISE-3

18 .

 ฮి ఠఠ జ?

Downloaded from https:// www.studiestoday.com

(ఆ) ఓతటిజ తజి ణు,జ్జు
2.

(o) $\frac{2}{3}$
(ஃ) $\frac{3}{5}$
(అ) $\frac{4}{5}$
(अ) $\frac{1}{2}$

(o) 6,3
(\%) 7, 3
(అ) 8,3
(ఆ) 11,3

(o) $\frac{-2}{3}<\frac{4}{-9}<\frac{-5}{12}<\frac{7}{-18}$
(ஃ) $\frac{7}{-18}<\frac{-5}{12}<\frac{4}{-9}<\frac{-2}{3}$
(అ) $\frac{4}{-9}<\frac{7}{-18}<\frac{-5}{12}<\frac{-2}{3}$
(ङ) $\frac{-2}{3}<\frac{-5}{12}<\frac{4}{-9}<\frac{7}{-18}$

(0) $\frac{-1}{2}$
(ஃ) 0
(అ) $\frac{12}{15}$
(ఆ) ఓఏోిజ ๔్జి ణు,జజు

(o) $\frac{18}{1000}$
(\%) $\frac{18}{990}$
(అ) $\frac{18}{9900}$
(अ) $\frac{18}{999}$

$$
\frac{5}{1+\frac{1}{3+\frac{1}{2 \frac{1}{4}}}}
$$

(0) $\frac{40}{31}$
(ஃ) $\frac{4}{9}$
(అ) $\frac{1}{8}$
(अ) $\frac{31}{40}$

(०) $\square \frac{1}{4}$
(ஃ) $\square \frac{3}{20}$
(అ) $\square \frac{3}{10}$
(ఆ) $\square \frac{7}{20}$

(o) $\frac{2}{3}, \frac{3}{5}, \frac{7}{9}, \frac{9}{11}, \frac{8}{9}$
(ஃ) $\frac{3}{5}, \frac{2}{3}, \frac{9}{11}, \frac{7}{9}, \frac{8}{9}$
(అ) $\frac{3}{5}, \frac{2}{3}, \frac{7}{9}, \frac{9}{11}, \frac{8}{9}$
(ఆ) $\frac{8}{9}, \frac{9}{11}, \frac{7}{9}, \frac{2}{3}, \frac{3}{5}$

(o) $\frac{1}{4}$
(ஃ) $\frac{23}{24}$
(అ) $\frac{11}{12}$
(ङ) $\frac{17}{24}$
11. $5 \square\left[\frac{3}{4}+\left\{2 \frac{1}{2}-\left(0.5+\overline{\frac{1}{6}-\frac{1}{7}}\right)\right\}\right]:-$
(o) $2 \frac{23}{84}$
(ะ) $3 \frac{1}{6}$
(అ) $3 \frac{3}{10}$
(अ) $5 \frac{1}{10}$
12. ญజి $2805 \div 2.55=1100$, ణuజీక $280.5 \div 25.5=$
(0) 1.1
(ஃ) 1.01
(అ) 0.11
(ఆ) 11
13. ఇख్టటఙిణజ: $\frac{8-[5-(-3+2)] \div 2}{|5-3|-|5-8| \div 3}$
(o) 2
(ஃ) 3
(అ) 4
(ఆ) 5

[ఓవిఱఱ-2008]
(0) $\frac{4}{10}$
(ஃ) $\frac{4}{9}$
(అ) $\frac{4}{100}$
(अ) $\frac{9}{4}$

(o) 81
(ะ) 24
(అ) 192
(ఆ) 375
16. ఖชజి 甲 <2, ణబుజబటి 11

[ఓవిఖణ-2008]
(0) $2+\Phi$
(ஃ) $甲$
(అ) $\square \Phi$
(ఆ) $\square(2+\Phi)$

(0) $\frac{7}{162}$
(\%) $\frac{162}{7}$
(అ) $\frac{163}{7}$
(ङ) $\frac{7}{163}$

(ஃ) Oటతఒఒథి టజ ణ્,జిట 1
(అ) 0టతిజిథి జడ్జియిట ణఠ 1

(o) $\frac{1}{n}$
(ஃ) $\frac{2}{n}$
(అ) $\frac{2(\mathrm{n}-1)}{\mathrm{n}}$
(ఆ) $\frac{2}{\mathrm{n}(\mathrm{n}+1)}$

Downloaded from https：／／www．studiestoday．com

20．2ీజ జీట $\mathfrak{a z ~ జ ి ~}\left(\frac{x^{b}}{x^{c}}\right)^{\frac{1}{b c}} \times\left(\frac{x^{c}}{x^{a}}\right)^{\frac{1}{c a}} \times\left(\frac{x^{a}}{x^{b}}\right)^{\frac{1}{a b}} \rho:$
（0）$甲$
（ஃ）$\frac{1}{x}$
（అ）$\square 1$
（ఆ） 1

（o） 0
（8）$\varnothing^{3+\varphi+\varphi+\varphi}$
（అ）$\frac{1}{\mathrm{x}^{\mathrm{a}+\mathrm{b}+\mathrm{c}}}$
（ఆ） 1

22．$\left(\frac{\mathrm{a}^{-1} \mathrm{~b}^{-1}}{\mathrm{a}^{-1}+\mathrm{b}^{-1}}-\frac{\mathrm{a}^{-1} \mathrm{~b}^{-1}}{\mathrm{a}^{-1}-\mathrm{b}^{-1}}\right)$ स्ञाओ ణo：
（0）$\frac{2 b}{b^{2}-a^{2}}$
（ஃ）$\frac{2 b}{a^{2}-b^{2}}$
（అ）$\frac{2 \mathrm{a}}{\mathrm{b}^{2}-\mathrm{a}^{2}}$
（ఆ）$\frac{2 a}{a^{2}-b^{2}}$

（ఆ）ఓबటిజ ๔ి ణు，జజ

24． $2.2 \overline{34}=$
（0）$\frac{1101}{495}$
（ะ）$\frac{1103}{495}$
（అ）$\frac{1106}{495}$
（ఆ）$\frac{1105}{495}$

（o）$\sqrt{19}$
（ஃ）$\sqrt{16}$
（అ）$\sqrt{17}$
（अ）$\sqrt{18}$

（0）$\frac{27161}{9999}$
（ஃ）$\frac{27}{99}$
（అ）$\frac{27161}{9900}$
（ఆ）$\frac{27161}{9000}$

27．2ి，జ 飞టట్జ ๔్జ $0.4 \overline{23} \mathrm{p}:$
（0）$\frac{423}{1000}$
（ஃ）$\frac{419}{1000}$
（అ）$\frac{423}{9000}$
（ङ）$\frac{419}{990}$

28．มృజి $\Phi=3+\sqrt{8}$ జటటిజ $甲=3 \square \sqrt{8}$ ణజజీ $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}=$
（0）$\square 34$
（8） 34
（అ） $12 \sqrt{8}$
（丹）$\square 12 \sqrt{8}$

29． $1+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}$, జడ్విట్ ణo \square
（0）$\frac{1}{3}$
（\％）$\frac{11}{7}$
（అ） 3
（अ） $1 \frac{1}{3}$

30 ．$\frac{\left(x^{a+b}\right)^{2}\left(x^{b+c}\right)^{2}\left(x^{c+a}\right)^{2}}{\left(x^{a} \times x^{b} \times x^{c}\right)^{4}}=$ ？
（0）\square
（ஃ） 0
（అ） 1
（ఆ）ఓఠటిజ ๔్జి ణ，జ్జు

									め ๕ ¢						
Que．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans．	B	C	B	A	A	D	C	B	C	D	A	D	D	B	A
Que．	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans．	D	A	C	B	D	D	D	A	C	B	C	D	B	B	C

Downloaded from https：／／www．studiestoday．com

Downloaded from https:// www.studiestoday.com Important Notes

Downloaded from https:// www.studiestoday.com

