Ratio, Proportion And Unitary Method

1. Write the ratios in the simplest form:
i) $\quad 15$ minutes to one hour

viii)	2 cm to 4 cm	xv)	750 g to 3 kg
ix)	4 days to 2 weeks	xvi)	8 days to 6 weeks
x)	3 yrs. To 6 months	xvii)	$450 \mathrm{ml} \quad$ to $3 l$
xi)	45 sec to 3 min	xviii)	8 mm to 1 cm
xii)	45 cm to 3 m	xix)	Rs. 1.50 to 25 p
xiii)	30 min to 4 hours	xx)	4 months to 4 yrs
xiv)	Rs. 1500 to Rs. 18000 xxi$)$	$294: 343$	

vii) 3 dozen to 3 scores
xiv) Rs. 1500 to Rs. 18000 xxi) 294 : 343
2. Divide Rs. 1450 between A and B in the ratio $2: 3$
3. Dr. Suma earns Rs. 50,000 p.m. she spends Rs. 42,000 of it and saves the rest. Find the ratio of
i) Her expenditure to her income
ii) Her saving to her income
iii) Her expenditure to her savings
4. Fill in :
i) $3: 5=$ \qquad : 15
v) $6: 7=$ \qquad :49
ix) $\quad 5: 30=$ \qquad :6
ii) 6 : \qquad $=12: 30$
vi) \qquad $: 5=20: 25$
x) 7 :
\qquad = 49:63
iii) \qquad $: 11=12: 22$
vii) 3 : \qquad $=5: 10$
xi) $1: 11=9$: \qquad
iv) $9: 13=27$: \qquad viii) $45: 15=3$: \qquad xii) \qquad $: 13=18: 117$
5. Meena got Rs. 600 as her share from Rs. 2000. Tina got Rs. 750 as her share from Rs. 3000.

Express their shares as ratios in the lower terms. Compare and find who got more.
6. Fill in the blanks with >, $=$ or <
i) $7: 10$ \qquad 5:10
ii) 6:7 \qquad 6:11
iii) 4:

5 \qquad 8:10
iv) $9: 13$ \qquad 9:15
V) $11: 20$ \qquad 9:20
VI) 4:9

12:27
7. The ratio of the length of a rectangle to its breadth is $3: 2$. If the perimeter of the rectangle
is 20 cm find the length, breadth and area.
8. Fill in :
i) $2: 4:: \quad$ ___ 10
ii) ___ $: 8:: 1: 4 \quad$ iii) $3: 8:: 15$: \qquad
iv) 1 : \qquad :: 3:15
v)

9: \qquad :: 90:100
9. The cost of 4 pens is Rs. 40. The cost of 11 pens is Rs. \qquad .
10. The weight of 15 boxes is 60 kg . The weight of 12 boxes is \qquad .
11. Maya can walk 6 km in 2 hours. In 3 hours she can walk \qquad .
12. Dinner at Marhaba costs SR 1050 for 10 people. How many people can have dinner for SR 1995?
13. A car travels 95 km in 5 litres of petrol. How far can it go in 11 litres of petrol?

Elementary Shapes

1. Given below are the lengths of the sides of triangles.

Classify them as equilateral, isosceles or scalene
i) $6 \mathrm{~cm}, 2.4 \mathrm{~cm}, 6 \mathrm{~cm}$
ii) $7 \mathrm{~cm}, 9 \mathrm{~cm}, 5.5 \mathrm{~cm}$
iii) 5.4 cm , $7 \mathrm{~cm}, 6.1 \mathrm{~cm}$
iv) $\quad 7.2 \mathrm{~cm}, 7.2 \mathrm{~cm}, 7.2 \mathrm{~cm}$
v) $\quad 10.1 \mathrm{~cm}, 8.6 \mathrm{~cm}, 8.6 \mathrm{~cm}$
vi)
$3.5 \mathrm{~cm}, 4.5 \mathrm{~cm}, 5.1 \mathrm{~cm}$
vii) $4.8 \mathrm{~cm}, 4.8 \mathrm{~cm}, 4.8 \mathrm{~cm}$ viii) $6.8 \mathrm{~cm} 6.8 \mathrm{~cm}, 8.6 \mathrm{~cm}$ ix) $3 \mathrm{~cm}, 4 \mathrm{~cm}$, 5 cm
2. Draw a triangle ABC using a protactor, measure $\angle_{\mathrm{A}}, \angle_{\mathrm{B}}$ and \angle_{C}.

Find their sum. What do you notice. Also measure the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$.
What kind of a triangle is this?
3. Given below are the measures of the angles of some triangles. Classify them As acute-angled, obtuse-angled or right-angled.
i) $60^{\circ}, 90^{\circ}, 30^{\circ}$
ii) $40^{\circ}, 100^{0}, 40^{\circ}$
iii) $60^{\circ}, 60^{\circ}, 60^{\circ}$
iv) $20^{0}, 40^{0}, 120^{\circ}$
v) $50^{0}, 60^{\circ}, 70^{0}$
vi) $45^{0}, 45^{0}, 90^{0}$
4. Draw a triangle ABC . Measure the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$

Verify i) $\mathrm{AB}+\mathrm{BC}>\mathrm{AC}$ ii) $\mathrm{BC}+\mathrm{AC}>\mathrm{AB} \quad$ iii) $\mathrm{AB}+\mathrm{AC}>\mathrm{BC}$
5. Write the number of sides of the following Polygons: Triangles, Pentagon, Quadrilateral, Heptagon, Hexagon, Nonagon, Octogon, Decagon.
6. Fill in:

	Number of		
Name of the Solid	Faces	Edges	Vertices
Cube			
Cuboid			
Square Pyramid			
Triangular Pyramid			
Triangular Prism			

7. Write yes of No

Quadrilateral	Opposite Sides		All	Opposite	All		Diagonals	
	Parallel Equal		Sides Equal	Angles Equal	Angles Equal	Equal	Perpendi cular	Bisect each
Trapezium								
Parallelogram								
Rhombus								
Rectangle								
Square								

8. Name each of the following 3-D shapes. Write number of Curved Surfaces and no of
flat faces.

Symmetry

1. Look around and list any five things from your surroundings that are symmetrical
2. Write any 3 English alphabet, which are symmetrical and have
i) One axis of symmetry
ii) Two axes of symmetry
iii) More than two axes of symmetry
3. Draw an angle of any measure. Using a ruler and protractor draw the line of symmetry (angle bisector).
4. Write the no. of axes of Symmetry of
i) Square
ii) Rectangle
iii) Circle
iv) Scalene Triangle
v) Equilateral Triangle
vi) Rhombus

Geometrical Constructions

1. Construct the following angles using a ruler and compasses
i) 60°
ii) 120^{0}
iii) 30^{0}
iv) 90°
v) 45^{0}
2. Draw an angle of measure 100° using protractor. Draw an angle equal to to this angle without using protractor. Draw the bisector of this angle.
3. Draw a circle of radius 4 cm . Inscribe a regular hexagon in it.
4. Draw a line-segment AB of any length. Draw the perpendicular bisector of it.
5. Draw a line ' \boldsymbol{l} '. Take a point P outside the line ' \boldsymbol{l} '. Draw a perpendicular line to ' \boldsymbol{l} ' from P.

Perimeter And Area

1. Which has greater perimeter? - a regular pentagon of 10 cm side or a rectangle with side 17 cm and 12 cm .
2. A wire bent in the shape of a rectangle of sides 13.5 cm by 6.5 cm was straightened and re-bent into a square. Find the length of the side of the square.
3. The cost of fencing a square field was Rs. 1380 @Rs. 15/m Find the side of the square field And hence find its area.
4. A wire was bent to make a square of side 10.5 cm The same wire is re-bent to make a regular hexagon. Find the length of side of the hexagon.
5. Area of a rectangle is $24 \mathrm{~cm}^{2}$. If its length is 6 cm find its width. Find the area of a Square whose perimeter is same as of this rectangle.

Whole Numbers

Fill in the blanks:

1. $25 \times 8 \times 125 \times 4=$ \qquad
2. $315 \times 105=315 \times 100+$ \qquad $\times 5$
3. Division by zero is \qquad
4. The whole number \qquad has no number .
5. The smallest natural number is \qquad .
6. The sum of 3 odd numbers is \qquad .
7. \qquad is the additive identity for the whole numbers.
8. $(7 \times 8) \times 5=7 \times(8 \times 5)$ This statement shows that multiplication of whole numbers is \qquad .
9. How many numbers between 102 and 211.
10. $3+7=7+3$. This statement shows that addition of whole numbers is
11. Determining the product by suitable rearrangements
a) $2 \times 125 \times 50 \times 8$
b) $16 \times 279 \times 625$
c) $2 \times 1735 \times 50$
12. Using distribution property, find each of the following products.
a) 213×104
b) 256×1007
c) 462×38
13. Find the value :
a) $361+1482+639+518$
b) $409+386+3591+614$
c) $786 \times 97+786 \times 3$
d) $14+438+486+62$
e) $1252 \times 112-1252 \times 12$
f) $716 \times 6+716 \times 4$
g) $8062 \times 169-8062 \times 69$
14. A teacher purchases 42 Mathematics books and 42 English books for his class. If the cost of a Mathematics book is Rs 52 and the cost of an English book is Rs48. Find the total amount paid by the teacher to the shopkeeper.
15. If the cost of a pack of mango drink is Rs.14. Then how many packs of the drink can be purchased for Rs. 76 and what is the balance?

Knowing Our Numbers

1. Estimate using general rule :
(i) $830+976$
(ii) 496-215
(iii) $13,804+3,777$
(iv) $61,292-21,496$
2. Estimate the products using general rule :
(i) 758×151
(ii) 4391×2300
(iii) 2187×456
(iv) 6978×43
3. Write the Roman Numeral for :
(i) 99
(ii) 48
(iii) 67
(iv) 81
(v) 17
(vi) 76
(viii) 54
4. Answer the following :
5. The town newspaper is published every day. One copy has 15 pages. Everyday 12, 500 copies are printed. How man total pages are printed every day?
6. Apples are packed in boxes, each weighing 5 kg 500 gm . How many such boxes can be loaded in a van which cannot carry beyond 1000 kg ?

Whole Numbers
Answer :
1)100000
2)315
3) not defined
4) zero
5) one
6) odd
7) zero
8) associate
9) 108
10) commutative
11)a) 100000
b) 2790000
c) 173500
14) 24200
15) 5, Balance
Rs. 6

Knowing our numbers
Answers : I) (i) 1,800
(ii) 300
(iii) 18,000
(iv) 40,000
II) (i) 16,0000 (ii) $80,00,000$ (iii) $10,00,000$ (iv) $2,80,000$
III) (i) XCIX
(ii) XLVIII
(iii) LXVII
(iv) LXXXI (v) XVII (vi) LXXXI
(v) XVII (vi) LXXVI (vii) XCIII (viii) LIV
IV)(1) $1,87,500$ pages \quad (2) 181 boxes

Understanding Elementary Shapes

I) Fill in the blanks :

1. An angle whose measure is greater than that of a right angle is \qquad
2. Three edges meet at a point called a \qquad .
3. A \qquad is larger than a straight angles.
4. A Polygon with 5 sides is called a \qquad .
5. A triangle having all three unequal sides is called a \qquad .
II) Write down the measure of
a) Some acute angles.
b) Some obtuse angles.
c) What is the measure of a straight angle?
III) What shape is
a) A brick.
b) A match box
c) A sweet laddu
d) A ball
e) A die
f) A road roller
IV) Name the types of following triangles :
6. $\triangle \boldsymbol{L} M N$ with $\boldsymbol{m}<\boldsymbol{L}=80^{\circ}, \boldsymbol{m}<\boldsymbol{M}=70^{\circ}, \boldsymbol{m}<\boldsymbol{M}=30^{0}$.
7. $\triangle A B C$ with $\boldsymbol{m}<A=90^{\circ}$.
8. $\triangle P Q R$ such that $P Q=Q R=P R=8 \mathrm{~cm}$
9. $\triangle X Y Z$ with $A B=8 \mathrm{~cm} \quad B C=5 \mathrm{~cm} \quad C A=5 \mathrm{~cm}$
10. Triangle with lengths of sides $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm .
11. $\triangle P Q R$ with $m<Q=90^{\circ}$ and $\mathrm{PQ}=\mathrm{QR}$.
V) Let $\overline{P Q}$ be the perpendicular to the line segment $\overline{X Y}$. Let $\overline{P Q}$ and $\overline{X Y}$ intersect in the point A . What is the measure of $<P A Y$?
VI) Classify each one of the following angles as right ,straight, acute, obtuse or reflex.
a)

d)

c)

e)
d)

VII) Find the angle measure between the hands of the clock in each figure

VIII) Name each polygon

e)
IX)
12. A cuboid has \qquad faces.
13. Each face has \qquad edges.
14. Each face has \qquad vertices.

Answers :
I) 1. Obtuse angle
4. Pentagon
2. Vertex
3. Reflex angle
5. Scalene triangle
6. 90°
III) a) cuboid
b) cuboid
c) sphere
d) sphere
e) cube
f) cylinder
IV) 1. Acute angled triangle
2. Right angles triangle
3. Equilateral triangle.
4. Isosceles triangle.
5. Scalene triangle
6. Isosceles right angled triangle
VI) a) obtuse angle
b) Acute angle
c) Reflex
d) Acute
e) Right
f) Acute
VII) a) Right angle $90^{\circ} \quad$ b) Acute \quad c) Straight angle 180°
VIII) a) Pentagon
b) triangle
c) Quadrilateral d)octagon e) Pentagon

IX 1. 6 faces

2. 4 edges
3. 4 edges

Playing With Numbers]

Fill in the blanks:

1. \qquad is a factor of every number.
2. The factor of a prime number is \qquad and \qquad .
3. A number which has more than two factor is called \qquad .
4. The smallest perfect number is \qquad .
5. If a number ends with 0 , it is divisible by \qquad .
6. The sum of all the factors of a perfect number is equal to \qquad the number.
7. \qquad is neither prime nor composite.
8. A number is divisible by 6 , if it is divisible by both \qquad and \qquad .
9. The smallest even numbers is \qquad and the smallest odd numbers is a \qquad -
10. Sum of any two even numbers is \qquad .
11. Sum of two odd numbers is \qquad .
12. The only one even prime is \qquad .
13. The greatest two digit prime number is \qquad .
14. The smallest two digit prime numbers is \qquad .
15. The difference between two twin prime is \qquad .
16. A prime number has only \qquad factors. 17. \qquad is the unique number.
17. The smallest digit in the blank space of \qquad 9853. So that the number so formed is divisible by 3 .
18. The L.C.M of two numbers in which one is a factor of the other is \qquad .
19. The L.C.M of two co-prime numbers \qquad .
20. The smallest factor of 856 is \qquad .
21. The smallest multiple of 856 is \qquad .
22. The greatest factor of 856 is \qquad .
23. The perfect numbers below 100 are \qquad and \qquad .

25 . The smallest prime number is \qquad .
26. The smallest composite number is \qquad .
27. The smallest number having three different prime factors is \qquad .
28. The sum of any two consecutive odd numbers is always divisible by \qquad .
29. The product of three consecutive numbers is divisible by \qquad .

Do the following :

1. Express the smallest 5 - digit number in the form of prime factor.
2. Determine if 9130 is divisible by 110 .
3. Using divisibility test check whether the following are divisible by $2,3,4,5,6,8,9,10$ and 11
(a) 91800
(b) 31956
(c) 81615
(d) 61042
(e) 48400
(f) 99909
4. Write all the twin primes below 100 .
5. Write all the prime numbers below 70 .
6. Find the smallest number when divided by 28,40 and 44 leave a remainder 8 in each case.
7. Write two prime numbers whose sum is 100 .
8. Write three pairs of prime numbers whose sum is an odd number.
9. Find the smallest four digit number which is exactly divisible by $12,16,24$ and 36 .
10. Write all the composite numbers between 30 and 50 .
11. The length, breadth and height of a room are $8 \mathrm{~m} 25 \mathrm{~cm}, 6 \mathrm{~m} 75 \mathrm{~cm}$ and 4 m 50 cm respectively. Determine the longest tape which can measure the three dimension of the room exactly.
12. Telegraph pole occurs at equal distances of 220 m along a road and heaps of stones are put at equal distances of 300 m along the same road. The first heap is at the foot of the first pole. How far from it along the road is the next heap which lies at the foot of a pole.

Answers :

1) 1
2) 1 and number itself
3) composite
4) 6
5) 10, 2 and 5
6) twice
7) 1 8) $2 \& 3$
8) 2,1
9) even
11)even
10) 2
11) 97
14)11
12) 2
13) two
14) 1
15) 2
16) the greater number
17) their product
18) 856
19) 856
20) 6 and 28
21) 2
22) 4
23) 30
24) 4
25) 6

Do the following

1. $2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5 \times 5$
2. Hint : Check the divisibility of 11 and 10 .
3. $(3,5),(5,7),(11,13),(17,19),(29,31),(41,43)$ \qquad
4. $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83$, 89, 97.
5. Hint : Find the LCM add 8 .
6. $97+3=100,89+11=100$
7. $(2,7),(2,11),(2,13)$ \qquad
8. 864
11.75 cm
9. 3300

Basic Geometrical Ideas]

I) (a) Name all the different angles shown in the figures:
(b) Count the number of angles.
(c)List the acute angles
(d) List the obtuse angles
(e) Identify the right angles and straight angles.

A
(ii) B

(iv)
2) List all the points which are in the exterior and interior of the given angle $<\mathbf{1}$

t
3. Draw a rough sketch of a quadrilateral $P Q R S$ state
a) two pairs of opposite sides.
b) two pairs of opposite angles.
c) four pairs of adjacent angles
d)four pairs of adjacent sides.
e) Draw the diagonals and name them.
4) Name the interior and exterior points of the angle marked \boldsymbol{x}^{0} in the following:

c) Write the names of line segments.

6) Draw any circle and mark
(a) its centre
(b) three radii
(c) a diameter
(d) shade a minor sector
(e) colour a minor arc
(f) a chord
(g) two points in its interior
(h) two points in its exterior
(j) three points on the circle

Integers

I Fill in the blanks:

1. $-5+(-11)=$ \qquad
2. $8+(-6)=$ \qquad
3. $(-26)+(-37)=$ \qquad
4. Write the greatest negative integer \qquad
5. Write all integers between - 30 and -20 \qquad
6. Find the sum of -45 and 30
7. Which is greater : - 65 or -56 ?
8. Which integer is neither positive nor negative ?
II. Draw a number line and answer the following :
9. Which number will we reach if we move 4 numbers to the right of -2 ?
10. If we are at -6 on the number line, in which direction should we move to reach -1 ?
11. Using the number line write the integer
a) 4 less than -1
2) 6 more than -6
4. Use number line and add the following integers :
a)
$(-1)+(-8)$
b) $(-1)+(-2)+(-4)$
c) $-8-(-10)$
5. Fill in the blanks with >, < or =
a) $54-(-11)$ \qquad $57+(-4)$
b) $(-35)-(-52)$ \qquad $(-52)-(-35)$
6. Find :
i)
$60-(-20)-(+10)$
ii) $(-15)+12-9+1$

Fractions

1. What fraction of an hour is 30 minutes ?
2. Write the natural numbers from 5 to 15 . What fraction of them are prime numbers?
3. Express as mixed fractions.
a) $\frac{30}{7}$
b) $\frac{51}{9}$
4. Express as improper fractions.
a) $7 \frac{3}{9}$
b) $11 \frac{1}{13}$
5. Find as equivalent fraction of $\frac{\mathbf{5 6}}{\mathbf{7 2}}$ with denominator 18.
6. Simplify
i) $\quad \frac{21}{35}$
ii) $\frac{\mathbf{3 4}}{\mathbf{8 5}}$
iii) $\frac{75}{120}$
iv) $\frac{66}{75}$
v) $\frac{112}{128}$
vi) $\frac{48}{57}$
7. Add
a) $\frac{5}{12}$ and $\frac{19}{24}$
b) $\frac{3}{8}, \frac{1}{2}$, and $\frac{5}{6}$
c) $2 \frac{5}{6}$ and $8 \frac{1}{4}$
8. The weight of two boxes together is $5 \frac{3}{4} \mathrm{~kg}$. If one box weighs $2 \frac{5}{6} \mathrm{~kg}$,

Find the weight of the other.

Mensuration

1. The length and breadth of a Rectangle are 11 cm and 9 cm . Find its area and Perimeter.
2. The area of a Rectangle is 144 sq cm and its length is 16 cm . Find the breadth of the Rectangle?
3. Find the perimeter of a regular hexagon of side xcm .
4. If the perimeter of a regular pentagon is 65 cm . Find its side?
5. The perimeter of a triangle is 42 cm . If two of its sides are 16 cm and 12 cm . Find its third side?
6. A piece of string is 45 cm long. It is bent to form an equilateral triangle. Find the side of triangle.
7. An athlete takes 5 rounds of a rectangular park 120 m long and 80 m wide. Find the total distance covered by him.
8. Find the area of a square whose perimeter is 260 cm .
9. The total cost of fencing a square park at Rs. 20 per metre is Rs. 2880. Find the side of the square park.
10. The floor of a room with dimensions 5 m and 3 m is to be covered with square tiles. If each square tile is of side 25 cm . Find the number of tiles required.

Practical Geometry

1. Draw a circle of radius 5.6 cm
2. With the same centre O , draw two circles of radii 5 cm and 2.5 cm
3. Draw any circle and mark points P, Q and R such that
a) P is on the circle
b) Q is in the interior of the circle.
c) R is in the exterior of the circle.
4. Draw any line segment $\overline{P Q}$. Mark any point B on it. Through B, draw a perpendicular to $\overline{P Q}$.
5. Draw $\overline{X Y}$ of length 8.3 cm and find its axis of symmetry.
6. Draw a line segment of length 10.5 cm and construct its perpendicular bisector.
7. With $\overline{A B}$ of length 6.2 cm as diameter, draw a circle.
8. Draw a circle of radius 4.5 cm . Draw any two of its chords. Construct the perpendicular bisectors of these chords. Where do they meet.
9. Draw a line segment of length 10.8 cm . Using compasses, divide it into four equal parts . Verify by actual measurement.
10. Draw the perpendicular bisector of $\overline{A B}$ whose length is 8.3 cm
a) Take any point P on the bisector drawn. Examine whether $\mathrm{PA}=\mathrm{PB}$
b) If M is the mid point of $\overline{A B}$, what can you say about the length of MA and MB?
11. Draw an angle of measure 137° and construct its bisector.
12. Draw a right angle and construct its bisector.
13. Draw an angle of measure 152° and divide into four equal parts
14. Draw an angle of measure 60° and bisect it.
15. Draw an angle of measure 150° and bisect it.
16. Construct with ruler and compasses, angles of following measures.
a) 60°
b) 120°
c) 90°
d) 45^{0}
e) 15^{0}
f) 30^{0}
17. Draw a circle and any two of its diameter. What is the figure obtained ? What figure is obtained if the diameter are perpendicular to each other ?

1) Can you draw a triangle which has
a) exactly one line of symmetry
b) exactly two lines of symmetry?
c) exactly three lines of symmetry?
d) no lines of symmetry?
2) Find the number of lines of symmetry in each of the following shapes?

3) Consider the letters of English alphabets, A to Z.

List among them the letters which have
a) Vertical lines of symmetry
b) Horizontal lines of symmetry
c) No lines of symmetry
4) Complete the following table :

Sl\#	Shape	Rough Figure	Number of lines of symmetry
1.	Equilateral triangle		
2.	Square		
3.	Rectangle		
4.	Isosceles Triangle		
5.	Rhombus		
6.	Circles		
7.	Parallelogram		
8.	Scalene Triangle		

5) Write some application of symmetry in everyday life.
