Downloaded from www.studiestoday.com

MAGNETIC EFFECTS OF CURRENT

Test Paper-I

MAX MARKS: 30 TIME: 90Mts

SI. No. 1	QUESTION ANS Give the results of Oersted's experiment on current carrying conductor ke	wer PAGE pt nearer to	MARKS 2
	a magnetic needle.	Page:132	
2	What is the force acting on an electric charge q moving with a velocity vir	the	3
	presence of both the electric field and magnetic field? Give the features of the force of		
	interaction of charge with the magnetic field.	Page:134	
3	What is the SI unit of magnetic field? Give the value of it in terms of gauss	. Also give	2
	the value of earth's magnetic field.	Page:135	
4	Derive an expression to find the magnetic force acting on a current-carryi	ng conductor	. 2
		Page:135	
5	Give the physical significance of permittivity and permeability of a mediur	M. Page:136	2
6	A straight wire of mass 200 g and length 1.5m carries a current of 2 A. It is suspended		
	in mid-air by a uniform horizontal magnetic field B. What is the magnitude of the		2
	magneticfield?	Page:137	
7	Derive an expression to find the radius of the circular path traced out by a charged		
	$particle\ q\ moving\ with\ a\ velocity\ v\ perpendicular to\ the\ direction\ of\ the\ magnetic\ field.$		3
	Also find its angular frequency.	Page:138	
8	How will you select charged particles of a particular velocity out of a beam containing		2
	charges moving with different speeds?	Page:140	
9	Define pitch of the helical path described by a charged particle moving ins	side a	1
	magnetic field B with a velocity v.	Page:138	
10	Give the principle of working of a cyclotron. What is the use of a cyclotron	? Page:140	2
11	With a neat diagram explain the working of a cyclotron.	Page:141	3
12	show that kinetic energy attained by the particles moving inside the cyclotron		3
	is $KE = q^2 B^2 R^2 / 2m$ Page:141		
13	A cyclotron's oscillator frequency is 10 MHz What should be the operating magnetic		
	field for accelerating protons? If the radius of its 'dees' is 60cm, what is the kinetic		
	energy (in MeV) of the proton heam produced by the accelerator	Page:142	