
ELECTROSTATICS

ELECTROSTATIC POTENTIAL AND CAPACITANCE

Test Paper-I

MAX MARKS: 30 TIME: 90Mts

SI.	QUESTION	ANSWER PAGE	MAR
1	What are conservative forces? Give some examples.	Page:51	2
2	Define electric potential energy difference between any two points. Also give the		2
	expression to find the same.	Page:52	
3	Define electrostatic potential at a point. Give the expression	n to find the same.	2
		Page:54	
4	Plot a graph showing the variation of (i) Electrostatic potential (ii) electric		2
	intensity with distance r.	Page:55	
5	(a)Calculate the potential at a point P due to a charge of 4 X 10^{-7} C located 9 cm		
	away.(b) Hence obtain the work done in bringing a charge 2X 10 ⁻⁹ C from infinity to the point P. Does the answer depend on the path along which the charge is		3
	brought?	Page:55	
6	Derive an expression to find the potential due to an electric dipole (i) at a point		3
	on the axis of the dipole and (ii) at a point on the equatorial	line. Page:56	
7	Two charges 3 X 10 ⁻⁸ C and -2 X 10 ⁻⁸ C are located 15cm apart. At what point on		
	line joining the two charges is the electric potential zero? Ta	ake the potential at	3
	infinity to be zero.	Page:58	
8	Fig shows the field lines of a positive and negative charges respectively.		

3

Downloaded from www.studiestoday.com

- a. Give the signs of the potential difference V_P-V_Q; V_B-V_A.
- b. Give the sign of the potential energy difference of a small negative charge between the points Q and P; A and B.
- c. Give the sign of the work done by the field in moving a small positive charge from Q to P.
- d. Give the sign of the work done by the external agency in moving a small charge from B to A.
- e. Does the kinetic energy of a small negative charge increase or decrease in going from B to A?

 Page:59
- 9 What is an equipotential surface? Draw the equipotential surfaces for the following
 - a. Uniform electric field
 - b. A Dipole
 - c. Two identical positive charges. Page:60
- Give the relation between Electric field and electrostatic potential. What 3 important conclusions that can be drawn from the relation? Page:61
- Derive an expression to find the potential energy of a system of two charges in an external field.

 Page:65
- How can you say that the electric field must be normal to the equipotential surface?

 Page:60