## Dual nature of matter and radiation

## **Test Paper-I**

MAX MARKS: 30 TIME: 90Mts

| SI. No.<br>1 | QUESTION  Plot a graph showing the variation of photoelectric current v                                                                                                  | ANSWER PAGE                | MARKS |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|--|
| -            | potential for light of same intensity at various frequencies.                                                                                                            | ·                          | 3     |  |
|              | inferences from the graph. Page:391                                                                                                                                      |                            |       |  |
| 2            | Plot a graph showing the variation of stopping potential with the frequency of                                                                                           |                            |       |  |
|              | incident radiation for two different photosensitive materials having work-functions                                                                                      |                            |       |  |
|              | W1 and W2(W1>W2). On what factors does the                                                                                                                               |                            |       |  |
|              | i. Slope and                                                                                                                                                             |                            |       |  |
|              | ii. Intercept of the lines depend?                                                                                                                                       | Page:392                   |       |  |
| 3            | Two monochromatic radiations of frequencies n1 and n2 (n1>n2) and having the                                                                                             |                            |       |  |
|              | same intensity are in turn, incident on a photosensitive surface to cause                                                                                                |                            |       |  |
|              | photoelectric emission. Explain giving reason in which case (i) more number of                                                                                           |                            |       |  |
|              | electrons will be emitted and (ii) maximum kinetic energy o                                                                                                              |                            |       |  |
|              | photoelectrons will be more.                                                                                                                                             | Page:392                   |       |  |
| 4            | Find the statement which is not true from the following Page:392                                                                                                         |                            |       |  |
|              | a. The stopping potential varies linearly with the frequ                                                                                                                 | iency of incident          |       |  |
|              | radiation for a given photosensitive material.                                                                                                                           |                            | 1     |  |
|              | b. There exists a certain minimum cutoff frequency fo                                                                                                                    | r which the stopping       |       |  |
|              | potential is zero.  c. For a frequency v of incident radiation, lower than the cut-off frequency v no photoelectric emission is possible even if the intensity is large. |                            |       |  |
|              |                                                                                                                                                                          |                            |       |  |
|              |                                                                                                                                                                          |                            |       |  |
|              | does not vary linearly                                                                                                                                                   |                            |       |  |
|              | $with the frequency of incident \ radiation, but is independent \ of its intensity.$                                                                                     |                            |       |  |
| 5            | Find from the following which is not as per the experimenta                                                                                                              | ll features and            |       |  |
|              | observations of photoelectric effect. Page:392                                                                                                                           |                            |       |  |
|              | a. For a given photosensitive material and frequency of                                                                                                                  | of incident radiation, the |       |  |
|              | photoelectric current is directly proportional to the                                                                                                                    | intensity of incident      | 1     |  |
|              | light.                                                                                                                                                                   |                            | -     |  |
|              | b. For a given photosensitive material and frequency of                                                                                                                  | of incident radiation,     |       |  |
|              | saturation current is found to be proportional to the                                                                                                                    | e intensity of incident    |       |  |
|              | radiation                                                                                                                                                                |                            |       |  |

## Downloaded from www.studiestoday.com

|    | c. Stopping potential is dependent on intensity of the incident radiation            |                                                                                   |                     |     |  |  |
|----|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|-----|--|--|
|    | d. For a given photosensitive material, there exists a certain minimum               |                                                                                   |                     |     |  |  |
|    |                                                                                      | frequencycalledthresholdfrequencybelowwhichnoemissiontakesplace.                  |                     |     |  |  |
| 6  | a.                                                                                   | Why photoelectric effect cannot be explained on the basi                          | s of wave nature    | 3   |  |  |
|    |                                                                                      | of light? Give reasons.                                                           | Page:393            |     |  |  |
|    | b.                                                                                   | Write the basic features of photon picture of Electromagn                         | netic radiation on  |     |  |  |
|    |                                                                                      | which  Einstein's  photoelectric  equation  is  based.                            |                     |     |  |  |
| 7  | What is the expression to find the maximum kinetic energy of the electron emitted    |                                                                                   |                     |     |  |  |
|    | from the metal surface when a quantum of energy hv is incident on the metal          |                                                                                   |                     |     |  |  |
|    | surface                                                                              | e? What do you call the equation?                                                 | Page:394            |     |  |  |
| 8  | Give th                                                                              | e factors on which maximum kinetic energy of the electro                          | n emitted in        | 1   |  |  |
|    | photoe                                                                               | electric effect depends upon.                                                     | Page:394            |     |  |  |
| 9  | Define                                                                               | threshold frequency.                                                              | Page:394            | 1   |  |  |
| 10 | Explair                                                                              | n why for a frequency $v > v_0$ , the threshold frequency Photo                   | electric current is | 1   |  |  |
|    | propor                                                                               | tional to intensity                                                               | Page:394            |     |  |  |
| 11 | What i                                                                               | s the basic elementary process involved in photoelectric ef                       | fect? What type of  | 1+1 |  |  |
|    | proces                                                                               | sitis?                                                                            | Page:395            |     |  |  |
| 12 | How the frequency does varies with stopping potential. What type of graphical        |                                                                                   |                     |     |  |  |
|    | relatio                                                                              | n do you expect from the relation?                                                | Page:395            |     |  |  |
| 13 | What a                                                                               | are the properties of photon?                                                     | Page:395            | 1   |  |  |
| 14 | Which                                                                                | experiment confirms the particle nature of light                                  | Page:395            | 1   |  |  |
| 15 | During which year Einstein was awarded Noble prize for his contribution to           |                                                                                   |                     |     |  |  |
|    | photoe                                                                               | electric effect.                                                                  | Page:395            |     |  |  |
| 16 | Who is                                                                               | the other scientist awarded noble prize for the Photoelect                        | ric effect same     | 1   |  |  |
|    | and in                                                                               | which year?                                                                       | Page:395            |     |  |  |
| 17 | Give ar                                                                              | ive any three points on the photon picture of Electromagnetic radiation. Page:396 |                     |     |  |  |
| 18 | Monochromatic light of frequency 6 X 10 $^{14}$ Hz is produced by a laser. The power |                                                                                   |                     |     |  |  |
|    | emitte                                                                               | d is 2 X 10 <sup>-3</sup> W.                                                      | Page:396            | 2   |  |  |
|    | a.                                                                                   | What is the energy of a photon in the light beam?                                 |                     |     |  |  |
|    | h                                                                                    | How many photons persocond on an average are emitte                               | d by the cource?    |     |  |  |

b. How many photons per second on an average, are emitted by the source?