Downloaded from www.studiestoday.com

CURRENT ELECTRICITY

Test Paper-II

MAX MARKS: 30 TIME: 90Mts

SI. No.	QUESTION	ANSWER PAGE	MARKS
1	The resistance of the platinum wire of a platinum resistance thermometer at the ice		2
	point is 5Ω and at steam point is 5.23Ω when the thermometer is inserted in a hot bath,		
	the resistance of the platinum wire is 5.795 Ω . Calculate the temperature	ure of the bath. Page:105	
2	Find the effective resistance when resistances are connected in series	Page:107	2
3	Find the effective resistance when resistances are connected in paralle	el. Page:107	2
4	Explain why a transformer is required to lower the voltage to a value s	uitable for use at	2
	a station?	Page:107	
5	Derive the expression to find the power dissipated when current I is allowed to flow		
	through a conductor?	Page:106	2
6	What is an emf of a cell? Derive an expression to find the current flowing in a circuit in		3
	which a resistor R is connected across a cell of emf ε.	Page:110	
7	Derive an expression to find the effective emf of cells in series	Page:113	2
8	Derive an expression to find the effective emf of cells in parallel	Page:114	2
9	State Kirchhoff's rules.	Page:116	2
10	What is a Wheatstone Bridge? What is the advantage of it?	Page:118	1
11	What is a Meter Bridge? Explain with a neat circuit diagram how a meter bridge can be		
	Used to determine the unknown resistance of the given wire.	Page:120	3
12	In a meter bridge, the null point is found at a distance of 33.7 cm from one end of the		
	meter bridge. If now a resistance of 12Ω is connected in parallel with S, the null point		2
	occurs at 51.9 cm. Determine the values of R and S.	Page:121	
13	Give the principle of working of a potentiometer. Explain with a neat circuit diagram		3
	how potentiometer can be used to compare the emf of two primary cells. Page:122		
14	Explain with a neat circuit diagram how potentiometer can be used to find the internal		
	resistance of a cell	Dags :122	2