
ALTERNATING CURRENT

Test Paper-II

MAX MARKS: 30 TIME: 90Mts

SI. No.	QUESTION ANSWER PAGE Show that the average power though over a completer cycle in an ac circuit consisting	MARKS 2	
	of capacitance is zero. Page:242		
2	$A\ lamp\ is\ connected\ in\ series\ with\ a\ capacitor.\ Predict\ your\ observations\ for\ dc\ and\ ac$	2	
	$connections. \ What happens in each case if the \ capacitance \ of the \ capacitor \ is \ reduced?$		
	Page:242		
3	A 15 μF capacitor is connected to a 22V, 50Hz source. Find the capacitive reactance		
	and the current (rms and peak) in the circuit. If the frequency is doubled, what		
	happens to the capacitive reactance and the current? Page:244		
4	A light bulb and an open coil inductor are connected to an ac source through a key as		
	$shown in fig. The \ switch \ is \ closed \ and \ after \ sometime, an \ iron \ rod \ is \ inserted \ into \ the$	2	
	interior of the inductor. The glow of the light bulb (a) increases; (b) de creases ;(c) is		
	unchanged, as the iron rod is inserted. Give your answer with reasons. Page:244		

Discuss about an LCR circuit with the help of a phasor diagram with relevant equations for current and voltage

Page:245

3

What is meant by resonance? How it is achieved in case of an LCR circuit? Give the graph showing the variation of current with frequency. Can this condition be achieved in case of LR circuit? Explain Page:248

Downloaded from www.studiestoday.com

7	Give the condition at which one can allow maximum value of current thro	ugh an LCR		
	circuit. What can you say about the current for frequencies other than res	onant	1/2 +	
	frequency?	Page:251	1/2	
8	What is Q- factor of an LCR circuit? What is the role of Q-factor in measur	ingthe	2	
	sharpnessofresonance?GiveanexpressiontofindtheQ-factor.	Page:251		
9	A resistor of 200 $\!\Omega$ and a capacitor of 15 μF are connected in series to a 22 $\!$	0V, 50 Hz ac		
	source. (a) Calculate the current in the circuit; (b) Calculate the voltage (re	ms) across the	3	
	resistor and the capacitor. Is the algebraic sum of theses voltages more th	an the source		
	voltage? If yes, resolve the paradox.	Page:251		
10	Derive an expression to find the power in an Ac circuit. What is the importance of			
	power factor in an LC R circuit?	Page:252	3	
11	A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to	a series LCR		
	circuit in which R= 3Ω , L=25.48mH, and C=796 μ F. Find (a) the impedance	of the circuit	3	
	;(b) the phase difference between the voltage across the source and the c	urrent; (c)		
	the power dissipated in the circuit; and (d) the power factor.	Page:253		
12	A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to	a series LCR		
	circuit in which R= 3 Ω , L=25.48mH, and C=796 μF .(a)What is the frequence	y of the	3	
	source at which resonance occurs?(b) Calculate the impedance, the curre	nt, and the		
	power dissipated at the resonant condition.	Page:254		
13	At an airport, a person is made to walk through the doorway of a metal de	etector, for		
	security reasons. If she/he is carrying anything made of metal, the metal of	detector	1	
	emits a sound. On what principle does this detector work?	Page:255		