Downloaded from www.studiestoday.com

VECTOR ALGEBRA

IMPORTANT POINTS TO REMEMBER

- A quantity that has magnitude as well as direction is called a vector. It is denoted by a directed line segment.
- > Two or more vectors which are parallel to same line are called **collinear vectors**.
- ▶ Position vector of a point P(a, b, c) w.r.t. origin (0, 0, 0) is denoted by \overrightarrow{OP} , where $\overrightarrow{OP} = a\hat{i} + b\hat{j} + c\hat{k}$ and $1 \ \overrightarrow{OP} = 1 = \sqrt{a^2 + b^2 + c^2}$.
- For a structure in the structure in
- > If two vectors \vec{a} and \vec{b} are represented in magnitude and direction by the two sides of a triangle taken in order, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by third side of triangle taken in opposite order. This is called **triangle law of addition of vectors.**
- > If \vec{a} is any vector and λ is a scaler, then $\lambda \vec{a}$ is a vector collinear with \vec{a} and $|\lambda \vec{a}| = |\lambda| |\vec{a}|$.
- > If \vec{a} and \vec{b} are two collinear vectors, then $\vec{a} = \lambda \vec{b}$, where λ is some scaler.
- Any vector \vec{a} can be written as $\vec{a} = |\vec{a}| \hat{a}$, where \hat{a} is a unit vector in the direction of \vec{a} .
- ➢ If *a* and *b* be the position vectors of points A and B, and C is any point which divides *AB* in the ratio m : n internally then position vector *c* of point C is given as $\vec{c} = \frac{m\vec{b} + n\vec{a}}{m+n}$. If C divides *AB* in ratio m : n externally, then $\vec{c} = \frac{m\vec{b} n\vec{a}}{m-n}$.
- > The angles α , β and γ made by $\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$ with positive direction of x, y and z-axis are called **direction angles** and cosines of these angles are called **direction cosines** of \vec{r} denoted as $l = \cos\alpha$, $m = \cos\beta$, $n = \cos\gamma$. Also $l = \frac{a}{lr\tilde{i}}$, $m = \frac{b}{lr\tilde{i}}$, $n = \frac{c}{lr\tilde{i}} \& l^2 + m^2 + n^2 = 1$
- > The numbers a, b, c proportional to l, m, n are called **direction ratios.**
- Scaler product of two vectors \vec{a} and \vec{b} is denoted as $\vec{a} \cdot \vec{b}$ & defined as $\vec{a} \cdot \vec{b} = |\vec{a}||$ $\vec{b}|\cos\theta$ where θ is the angle between \vec{a} and $\vec{b} \cdot (0 \le \theta \le \pi)$.
- \blacktriangleright $\vec{a} \cdot \vec{b} = 0$ if and only if $\vec{a} = \vec{0}, \vec{b} = \vec{0}$ or \vec{a} is perpendicular to \vec{b} .
- ➤ $\vec{a}.\vec{a} = l\vec{a}l^2$, so $\hat{\iota}.\hat{\iota} = \hat{j}.\hat{j} = \hat{k}.\hat{k} = 1$.
- > If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$.
- ► Cross product (Vector product) of two vectors \vec{a} and \vec{b} is denoted as $\vec{a} \times \vec{b}$ & defined as $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \hat{n}$, where θ is the angle between \vec{a} and \vec{b} . $(0 \le \theta \le \pi)$ and \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} such that \vec{a} , \vec{b} and \hat{n} form a right handed system.
- > $\vec{a} \times \vec{b} = \vec{0}$ iff $\vec{a} = \vec{0}, \vec{b} = \vec{0}$ or \vec{a} is parallel to \vec{b} .

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

- > Unit vector perpendicular to both $\vec{a} \& \vec{b} = \pm \frac{(\vec{a} X \vec{b})}{l \vec{a} X \vec{b} l}$
- > $|\vec{a} \times \vec{b}|$ is the area of parallelogram whose adjacent sides are \vec{a} and \vec{b} .
- $\geq \frac{1}{2} \mathbf{l} \, \vec{\mathbf{a}} \, \mathbf{x} \, \vec{\mathbf{b}} \, \mathbf{l}$ is the area of parallelogram whose diagonals are \vec{a} and \vec{b} .

ASSIGNMENT

- 1. If \vec{a}, \vec{b} are the position vectors of the points (1, -1), (-2, m), find the value of m for which $\vec{a} \& \vec{b}$ are collinear.
- 2. If a vector makes angles α , β , γ with OX, OY and OZ respectively, prove that $sin^2\alpha + sin^2\beta + sin^2\gamma = 2$.
- 3. Find the direction cosines of a vector \vec{r} which is equally inclined with OX, OY and OZ. If $1 \vec{r} 1$ is given, find the total number of such vectors.
- 4. A vector \vec{r} is inclined at equal angles to OX, OY and OZ. If the magnitude of \vec{r} is 6 units, find \vec{r} .
- 5. A vector \vec{r} has length 21 and d. r.s 2, -3, 6. Find the direction cosines and components of \vec{r} , given that it makes an acute angle with x axis.
- 6. Find the angles at which the vector $2\hat{\iota} \cdot \hat{j} + 2\hat{k}$ is inclined to each of the coordinate axes.
- 7. For any vector \vec{r} , prove that $\vec{r} = (\vec{r}. \hat{\iota})\hat{\iota} + (\vec{r}. \hat{\jmath})\hat{\jmath} + (\vec{r}.\hat{k})\hat{k}$.
- 8. Find the value of p for which the vectors $\vec{a} = 3\hat{\iota} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{\iota} + p\hat{j} + 3\hat{k}$ are i. Perpendicular ii. Parallel

9. If $\hat{a} \& \hat{b}$ are unit vectors inclined at an angle θ , then prove that $\sin \frac{\theta}{2} = \frac{1}{2} l \hat{a} - \hat{b} l$.

- 10. If \vec{a} makes equal angles with $\hat{i}, \hat{j} \& \hat{k}$ and has magnitude 3, then prove that the angle between \vec{a} and each of $\hat{i}, \hat{j} \& \hat{k}$ is $\cos^{-1}(1/\sqrt{3})$.
- 11. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$, find the angle between $\vec{a} \& b$.
- 12. Find a vector of magnitude 9, which is perpendicular to both the vectors $4\hat{\iota} \cdot \hat{j} + 3\hat{k} \& -2\hat{\iota} + \hat{j} 2\hat{k}$.
- 13. Find a unit vector perpendicular to the plane ABC where A, B, C are the points (3, -1, 2), (1, -1, -3), (4, -3, 1) respectively.
- 14. Show that area of a parallelogram having diagonals $3\hat{\iota} + \hat{j} 2\hat{k}$ and $\hat{\iota} 3\hat{j} + 4\hat{k}$ is $5\sqrt{3}$.
- 15. Show that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} & \vec{a} & \vec{a} & \vec{b} \\ \vec{a} & \vec{b} & \vec{b} & \vec{b} \end{vmatrix}$
- 16. Prove that the points A, B & C with position vectors \vec{a} , \vec{b} & \vec{c} respectively are collinear if and only if $\vec{a} \ge \vec{b} + \vec{b} \ge \vec{c} + \vec{c} \ge \vec{a} = \vec{0}$.
- 17. If $\vec{a} \ge \vec{b} = \vec{c} \ge \vec{d}$ and $\vec{a} \ge \vec{c} = \vec{b} \ge \vec{d}$, show that $\vec{a} \vec{d}$ is parallel to $\vec{b} \vec{c}$, where $\vec{a} \ne \vec{d}$, $\vec{b} \ne \vec{c}$
- 18. Let \vec{a} , \vec{b} , \vec{c} be unit vectors such that \vec{a} . $\vec{b} = \vec{a}$. $\vec{c} = 0$ and the angle between $\vec{b} \& \vec{c}$ is $\frac{\pi}{6}$, prove that $\vec{a} = \pm 2$ ($\vec{b} \ge \vec{c}$)

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

19. If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.

- 20. If \vec{a} , \vec{b} , \vec{c} are vectors such that \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, $\vec{a} \neq \vec{0}$, then show that $\vec{b} = \vec{c}$.
- 21. Show that the vectors $2\hat{\iota}-3\hat{\jmath}+4\hat{k}$ and $-4\hat{\iota}+6\hat{\jmath}-8\hat{k}$ are collinear.
- 22. Find λ , if $(2\hat{\iota}+6\hat{j}+14\hat{k}) \ge (\hat{\iota}-\lambda\hat{j}+7\hat{k}) = \vec{0}$.
- 23. Let $\vec{a} = \hat{\iota} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{\iota} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{\iota} \hat{j} + 4\hat{k}$. Find a vector \vec{p} which is is perpendicular to both $\vec{a} \ll \vec{b}$ and $\vec{p} \cdot \vec{c} = 18$.
- 24. If \vec{a} , \vec{b} , \vec{c} are three vectors such that $|\vec{a}| = 5$, $|\vec{b}| = 12$ and $|\vec{c}| = 13$, and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of \vec{a} . $\vec{b} + \vec{b}$. $\vec{c} + \vec{c}$. \vec{a} .
- 25. Find the position vector of a point R which divides the line joining the two points P and Q whose position vectors are $(2 \vec{a} + \vec{b})$ and $(\vec{a} 3\vec{b})$ respectively, externally in the ratio 1 : 2. Also, show that P is the midpoint of the line segment RQ.
- 26. Find a unit vector perpendicular to each of the vectors $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$.
- 27. If $|\vec{a}| = 13$, $|\vec{b}| = 5$ and $\vec{a} \cdot \vec{b} = 60$, then find $|\vec{a} \times \vec{b}|$.
- 28. If $1 \vec{a} = 2, 1 \vec{b} = 5$ and $1 \vec{a} \times \vec{b} = 8$, find $\vec{a} \cdot \vec{b}$.
- 29. If $\vec{a} = \hat{\iota} + \hat{j} + \hat{k}$, $\vec{c} = \hat{j} \hat{k}$ are given vectors, then find a vector \vec{b} satisfying the equations $\vec{a} \cdot \vec{x} \cdot \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 3$.
- 30. Express the vector $\vec{a} = 5\hat{\iota} 2\hat{j} + 5\hat{k}$ as the sum of two vectors such that one is parallel to the vector $\vec{b} = 3\hat{\iota} + \hat{k}$ and other is perpendicular to \vec{b} .
- 31. If the vertices A, B, C of triangle ABC have position vectors (1, 2, 3) (-1, 0, 0), (0, 1, 2) respectively, what is the magnitude of angle ABC?
- 32. If \vec{a} is a unit vector, then find $|\vec{x}|$ such that $(\vec{x} \vec{a})$. $(\vec{x} + \vec{a}) = 8$.
- 33. Show that vector $\hat{\iota} + \hat{j} + \hat{k}$ is equally inclined to the axes.
- 34. Show that three points $\vec{a} \vec{b} + 3\vec{c}$, $2\vec{a} + 3\vec{b} 4\vec{c}$ and $-7\vec{b} + 10\vec{c}$ are collinear.
- 35. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

Answer Key

1. m = 2 3. $\pm 1/\sqrt{3}, \pm 1/\sqrt{3}, \pm 1/\sqrt{3}; 8$ ways 4. $\vec{r} = 2\sqrt{3}(\pm \hat{\iota} \pm \hat{j} \pm \hat{k})$ 5. $2/7, -3/7, 6/7; \vec{r} = 6\hat{\iota} -9\hat{j} + 18\hat{k}$ 6. $\alpha = \cos^{-1} 2/3, \beta = \cos^{-1} -1/3, \gamma = \cos^{-1} 2/3$ 8. i. p = -15 ii. p = 2/3 11. $\pi/3$ 12. $-3\hat{\iota} + 6\hat{j} + 6\hat{k}$ 13. $\frac{1}{\sqrt{165}}(-10\hat{\iota} -7\hat{j} + 4\hat{k})$ 22. -323. $\pm (64\hat{\iota} - 2\hat{j} - 28\hat{k})$ 24. -16925. $3\vec{a} + 5\vec{b}$ 26. $\frac{1}{3}(2\hat{\iota} - 2\hat{j} - \hat{k})$ 27. 25 28. 6 29. $\frac{5}{3}\hat{\iota} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$ 30. $6\hat{\iota} + 2\hat{k}, -\hat{\iota} -2\hat{j} + 3\hat{k}$ 31. $\cos^{-1}(\frac{10}{\sqrt{102}})$ 32. 3

Downloaded from www.studiestoday.com