Downloaded from www.studiestoday.com

VECTOR ALGEBRA

IMPORTANT POINTS TO REMEMBER

$>$ A quantity that has magnitude as well as direction is called a vector. It is denoted by a directed line segment.
$>$ Two or more vectors which are parallel to same line are called collinear vectors.
$>$ Position vector of a point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ w.r.t. origin $(0,0,0)$ is denoted by $\overrightarrow{O P}$, where $\overrightarrow{O P}=$ $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ and $l \overrightarrow{O P} 1=\sqrt{a^{2}+b^{2}+c^{2}}$.
$>$ If $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ be any two points in space, then
$\overrightarrow{A B}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \hat{\imath}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \hat{\jmath}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \hat{k}$ and
$1 \overrightarrow{A B} 1=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$
$>$ If two vectors \vec{a} and \vec{b} are represented in magnitude and direction by the two sides of a triangle taken in order, then their sum $\vec{a}+\vec{b}$ is represented in magnitude and direction by third side of triangle taken in opposite order. This is called triangle law of addition of vectors.
$>$ If \vec{a} is any vector and λ is a scaler, then $\lambda \vec{a}$ is a vector collinear with \vec{a} and $\lambda \lambda \vec{a} l=1 \lambda 1 \mid \vec{a} 1$.
$>$ If \vec{a} and \vec{b} are two collinear vectors, then $\vec{a}=\lambda \vec{b}$, where λ is some scaler.
$>$ Any vector \vec{a} can be written as $\vec{a}=1 \vec{a} 1 \hat{a}$, where \hat{a} is a unit vector in the direction of \vec{a}.
$>$ If \vec{a} and \vec{b} be the position vectors of points A and B , and C is any point which divides $\overrightarrow{A B}$ in the ratio $\mathrm{m}: \mathrm{n}$ internally then position vector \vec{c} of point C is given as $\vec{c}=\frac{m \vec{b}+n \vec{a}}{m+n}$. If C divides $\overrightarrow{A B}$ in ratio $\mathrm{m}: \mathrm{n}$ externally, then $\vec{c}=\frac{m \vec{b}-n \vec{a}}{m-n}$.
$>$ The angles α, β and γ made by $\vec{r}=\mathrm{a} \hat{\imath}+\mathrm{b} \hat{\jmath}+\mathrm{c} \hat{k}$ with positive direction of x, y and z -axis are called direction angles and cosines of these angles are called direction cosines of \vec{r} denoted as $\mathrm{l}=\cos \alpha, \mathrm{m}=\cos \beta, \mathrm{n}=\cos \gamma$. Also $\mathrm{l}=\frac{a}{l \overrightarrow{r l}}, \mathrm{~m}=\frac{b}{l \overline{r l}}, \mathrm{n}=\frac{c}{l \overrightarrow{r l}} \& \mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$>$ The numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ proportional to $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are called direction ratios.
$>$ Scaler product of two vectors \vec{a} and \vec{b} is denoted as $\vec{a} \cdot \vec{b}$ \& defined as $\vec{a} \cdot \vec{b}=1 \vec{a} 11$ $\vec{b} \operatorname{lcos} \theta$ where θ is the angle between \vec{a} and $\vec{b} .(0 \leq \theta \leq \pi)$.
$>\vec{a} \cdot \vec{b}=0$ if and only if $\vec{a}=\overrightarrow{0}, \vec{b}=\overrightarrow{0}$ or \vec{a} is perpendicular to \vec{b}.
$>\vec{a} \cdot \vec{a}=|\vec{a}|^{2}$, so $\hat{l} . \hat{\imath}=\hat{\jmath} . \hat{\jmath}=\hat{k} . \hat{k}=1$.
$>$ If $\vec{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}, \vec{b}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k}$, then $\vec{a} . \vec{b}=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}$.
$>$ Cross product (Vector product) of two vectors \vec{a} and \vec{b} is denoted as $\vec{a} \times \vec{b}$ \& defined as $\vec{a} \times \vec{b}=1 \vec{a} 11 \vec{b} 1 \sin \theta \hat{n}$, where θ is the angle between \vec{a} and $\vec{b} .(0 \leq \theta \leq \pi)$ and \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} such that \vec{a}, \vec{b} and \widehat{n} form a right handed system.
$\Rightarrow \vec{a} \times \vec{b}=\overrightarrow{0}$ iff $\vec{a}=\overrightarrow{0}, \vec{b}=\overrightarrow{0}$ or \vec{a} is parallel to \vec{b}.

Downloaded from www.studiestoday.com

$>$ Unit vector perpendicular to both $\vec{a} \& \vec{b}= \pm \frac{(\overrightarrow{\boldsymbol{a}} \boldsymbol{X} \overrightarrow{\boldsymbol{b}})}{\boldsymbol{l} \overrightarrow{\boldsymbol{a}} \boldsymbol{X} \overrightarrow{\boldsymbol{b}} \boldsymbol{l}}$
$>\boldsymbol{l} \overrightarrow{\boldsymbol{a}} \mathbf{x} \overrightarrow{\boldsymbol{b}} \mathbf{l}$ is the area of parallelogram whose adjacent sides are \vec{a} and \vec{b}.
$>\frac{1}{2} \mathbf{l} \overrightarrow{\mathbf{a}} \mathbf{x} \overrightarrow{\mathbf{b}} \mathbf{l}$ is the area of parallelogram whose diagonals are \vec{a} and \vec{b}.

ASSIGNMENT

1. If \vec{a}, \vec{b} are the position vectors of the points $(1,-1),(-2, m)$, find the value of m for which $\vec{a} \&$ \vec{b} are collinear.
2. If a vector makes angles α, β, γ with OX, OY and OZ respectively, prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.
3. Find the direction cosines of a vector \vec{r} which is equally inclined with OX, OY and OZ . If $1 \vec{r} 1$ is given, find the total number of such vectors.
4. A vector \vec{r} is inclined at equal angles to OX, OY and OZ. If the magnitude of \vec{r} is 6 units, find \vec{r}.
5. A vector \vec{r} has length 21 and d. r.s 2, $-3,6$. Find the direction cosines and components of \vec{r}, given that it makes an acute angle with x axis.
6. Find the angles at which the vector $2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ is inclined to each of the coordinate axes.
7. For any vector \vec{r}, prove that $\vec{r}=(\vec{r} . \hat{\imath}) \hat{\imath}+(\vec{r} . \hat{\jmath}) \hat{\jmath}+(\vec{r} . \hat{k}) \hat{k}$.
8. Find the value of p for which the vectors $\vec{a}=3 \hat{\imath}+2 \hat{\jmath}+9 \hat{k}$ and $\vec{b}=\hat{\imath}+\mathrm{p} \hat{\jmath}+3 \hat{k}$ are
i. Perpendicular
ii. Parallel
9. If $\widehat{a} \& \hat{b}$ are unit vectors inclined at an angle θ, then prove that $\sin \frac{\theta}{2}=\frac{1}{2} 1 \hat{a}-\hat{b} 1$.
10. If \vec{a} makes equal angles with $\hat{\imath}, \hat{\jmath} \& \hat{k}$ and has magnitude 3 , then prove that the angle between \vec{a} and each of $\hat{\imath}, \hat{\jmath} \& \hat{k}$ is $\cos ^{-1}(1 / \sqrt{3})$.
11. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$, find the angle between $\vec{a} \& b$.
12. Find a vector of magnitude 9 , which is perpendicular to both the vectors $4 \hat{\imath}-\hat{\jmath}+3 \hat{k} \&$ $-2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$.
13. Find a unit vector perpendicular to the plane ABC where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the points $(3,-1,2)$, $(1,-1,-3),(4,-3,1)$ respectively.
14. Show that area of a parallelogram having diagonals $3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\hat{\imath}-3 \hat{\jmath}+4 \hat{k}$ is $5 \sqrt{3}$.
15. Show that $(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}\end{array}\right|$
16. Prove that the points A, B \& C with position vectors $\vec{a}, \vec{b} \& \vec{c}$ respectively are collinear if and only if $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$.
17. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$, where $\vec{a} \neq \vec{d}, \vec{b} \neq \vec{c}$
18. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between $\vec{b} \& \vec{c}$ is $\frac{\pi}{6}$, prove that $\vec{a}= \pm 2(\vec{b} \times \vec{c})$

Downloaded from www.studiestoday.com

19. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then prove that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.
20. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$, then show that $\vec{b}=\vec{c}$.
21. Show that the vectors $2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}$ and $-4 \hat{\imath}+6 \hat{\jmath}-8 \hat{k}$ are collinear.
22. Find λ, if $(2 \hat{\imath}+6 \hat{\jmath}+14 \hat{k}) \times(\hat{\imath}-\lambda \hat{\jmath}+7 \hat{k})=\overrightarrow{0}$.
23. Let $\vec{a}=\hat{\imath}+4 \hat{\jmath}+2 \hat{k}, \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+7 \hat{k}$ and $\vec{c}=2 \hat{\imath}-\hat{\jmath}+4 \hat{k}$. Find a vector \vec{p} which is is perpendicular to both $\vec{a} \& \vec{b}$ and $\vec{p} . \vec{c}=18$.
24. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $1 \vec{a} 1=5,1 \vec{b} 1=12$ and $1 \vec{c} 1=13$, and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
25. Find the position vector of a point R which divides the line joining the two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ respectively, externally in the ratio $1: 2$. Also, show that P is the midpoint of the line segment RQ.
26. Find a unit vector perpendicular to each of the vectors $\vec{a}=3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}$.
27. If $1 \vec{a} 1=13,1 \vec{b} 1=5$ and $\vec{a} \cdot \vec{b}=60$, then find $1 \vec{a} \times \vec{b} 1$.
28. If $1 \vec{a} 1=2,1 \vec{b} 1=5$ and $1 \vec{a} \times \vec{b} 1=8$, find $\vec{a} \cdot \vec{b}$.
29. If $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}, \vec{c}=\hat{\jmath}-\hat{k}$ are given vectors, then find a vector \vec{b} satisfying the equations $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$.
30. Express the vector $\vec{a}=5 \hat{\imath}-2 \hat{\jmath}+5 \hat{k}$ as the sum of two vectors such that one is parallel to the vector $\vec{b}=3 \hat{\imath}+\hat{k}$ and other is perpendicular to \vec{b}.
31. If the vertices A, B, C of triangle $A B C$ have position vectors $(1,2,3)(-1,0,0),(0,1,2)$ respectively, what is the magnitude of angle ABC ?
32. If \vec{a} is a unit vector, then find $1 \vec{x} 1$ such that $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$.
33. Show that vector $\hat{\imath}+\hat{\jmath}+\hat{k}$ is equally inclined to the axes.
34. Show that three points $\vec{a}-\vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are collinear.
35. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

Answer Key

1. $\mathrm{m}=2$ 3. $\pm 1 / \sqrt{3}, \pm 1 / \sqrt{3}, \pm 1 / \sqrt{3} ; 8$ ways \quad 4. $\vec{r}=2 \sqrt{3}(\pm \hat{\imath} \pm \hat{\jmath} \pm \hat{k})$
2. $2 / 7,-3 / 7,6 / 7 ; \vec{r}=6 \hat{\imath}-9 \hat{\jmath}+18 \hat{k} \quad$ 6. $\alpha=\cos ^{-1} 2 / 3, \beta=\cos ^{-1}-1 / 3, \gamma=\cos ^{-1} 2 / 3$
3. i. $\mathrm{p}=-15$ ii. $\mathrm{p}=2 / 3$
4. $\pi / 3$
5. $-3 \hat{\imath}+6 \hat{\jmath}+6 \hat{k}$
6. $\frac{1}{\sqrt{165}}(-10 \hat{\imath}-7 \hat{\jmath}+4 \hat{k})$
7. -3
8. $\pm(64 \hat{\imath}-2 \hat{\jmath}-28 \hat{k})$
9. -169
10. $3 \vec{a}+5 \vec{b}$
11. $\frac{1}{3}(2 \hat{\imath}-2 \hat{\jmath}-\hat{k})$
12. 25
13. 6
14. $\frac{5}{3} \hat{\imath}+\frac{2}{3} \hat{\jmath}+\frac{2}{3} \hat{k}$
15. $6 \hat{\imath}+2 \hat{k},-\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
16. $\cos ^{-1}\left(\frac{10}{\sqrt{102}}\right)$
17. 3
