Downloaded from www.studiestoday.com

THREE DIMENSIONAL GEOMETRY

KEY POINTS TO REMEMBER

Line in space

- > Vector equation of a line through a given point with position vector \vec{a} and parallel to the vector \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$.
- > Vector equation of line through two points with position vectors \vec{a} , \vec{b} is $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$
- > Angle θ between lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is given by $\cos\theta = \frac{b_1 \cdot b_2}{|\vec{b_1}| \cdot |\vec{b_2}|}$
- > Two lines are **perpendicular** to each other if $\overrightarrow{b_1} \cdot \overrightarrow{b_2} = 0$. Plane
- Equation of a plane at a distance of d unit from origin and perpendicular to \hat{n} is $\vec{r} \cdot \hat{n} = \mathbf{d}$.
- > Equation of plane passing through \vec{a} and normal to \vec{n} is $(\vec{r} \vec{a})$. $\vec{n} = 0$.
- > Equation of plane passing through three non collinear points with position vectors $\vec{a}, \vec{b}, \vec{c}$ is $(\vec{r} - \vec{a}) \cdot [(\vec{b} - \vec{a})X(\vec{c} - \vec{a}) = 0.$
- If three points are collinear, there are infinitely many possible planes passing through them.
- > Planes passing through through the intersection of planes $\vec{r} \cdot \vec{n_1} = d_1$ and $\vec{r} \cdot \vec{n_2} = d_2$ is given by $(\vec{r} \cdot \vec{n_1} d_1) + \lambda (\vec{r} \cdot \vec{n_2} d_2) = 0$.
- > Angle θ between the two planes $\vec{r} \cdot \vec{n_1} = d_1$ and $\vec{r} \cdot \vec{n_2} = d_2$ is given by $\cos \theta = \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1} \cdot \vec{n_2}|}$.
- > Two planes are **perpendicular** to each other iff $\overrightarrow{n_1}$. $\overrightarrow{n_2} = 0$.
- > Two planes are **parallel iff** $\overrightarrow{n_1} = \lambda \overrightarrow{n_2}$ for some scalar $\lambda \neq 0$.
- A line $\vec{r} = \vec{a} + \lambda \vec{b}$ is parallel to the plane $\vec{r} \cdot \vec{n} = d$ iff $\vec{b} \cdot \vec{n} = 0$. <u>ASSIGNMENT</u>
- 1. Show that the four points (0, -1, -1), (-4, 4, 4), (4, 5, 1) and (3, 9, 4) are coplanar. Find the equation of plane containing them.
- 2. Find the equation of plane passing through the points (2, 3, 4), (-3, 5, 1) and (4, -1, 2).
- 3. Find the equation of the plane through the points (2, 1, -1) and (-1, 3, 4) and perpendicular to the plane x 2y + 4z = 10.
- 4. Show that the following planes are at right angles:

 \vec{r} . $(2\hat{\iota} - \hat{\jmath} + \hat{k}) = 5$ and \vec{r} . $(-\hat{\iota} - \hat{\jmath} + \hat{k}) = 3$

- 5. Determine the value of p for which the following planes are perpendicular to each other:
 - i. \vec{r} . $(\hat{i} + 2\hat{j} + 3\hat{k}) = 7$ and \vec{r} . $(p\hat{i} + 2\hat{j} 7\hat{k}) = 26$
- ii. 2x 4y + 3z = 5 and x + 2y + pz = 5.
- 6. Find the equation of the plane passing through the point (-1, -1, 2) and perpendicular to

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

the planes 3x + 2y - 3z = 1 and 5x - 4y + z = 5.

- 7. Obtain the equation of the plane passing through the point (1, -3, -2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
- 8. Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y z = 1 and 3x 4y + z = 5.
- 9. Find the equation of the plane passing through the points (1, -1, 2) and (2, -2, 2) and which is perpendicular to the plane 6x 2y + 2z = 9.
- 10. Find the equation of the plane through the point (1, 4, -2) and parallel to the plane -2x + y 3z = 7.
- 11. Find the vector equations of the planes through the intersection of the planes $\vec{r} \cdot (2\hat{i} + 6\hat{j}) + 12 = 0$ and $\vec{r} \cdot (3\hat{i} \hat{j} + 4\hat{k}) = 0$ which are at unit distance from the origin.
- 12. If the line $\vec{r} = (\hat{\imath} 2\hat{\jmath} + \hat{k}) + \lambda (2\hat{\imath} + \hat{\jmath} + 2\hat{k})$ is parallel to the plane
 - \vec{r} . $(3\hat{\iota} 2\hat{j} + m\hat{k}) = 14$, find the value of m.
- 13. Find the equation of the plane through the points (1, 0, -1), (3, 2, 2) and parallel to the line $\frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-2}{-2}$
- 14. Find the equation of the plane passing through the point (0, 7, -7) & containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$
- 15. Prove that the lines $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ and $\frac{x-2}{1} = \frac{y-4}{4} = \frac{z-6}{7}$ are coplanar. Also, find the plane containing these two lines.
- 16. Show that the lines given below are coplanar. Also find the equation of the plane containing them.

 $\vec{r} = (2\hat{j} - 3\hat{k}) + \lambda(\hat{i} + 2\hat{j} + 3\hat{k}) \text{ and } \vec{r} = (2\hat{i} + 6\hat{j} + 3\hat{k}) + \mu(2\hat{i} + 3\hat{j} + 4\hat{k})$

- 17. Find the image of the point (3, -2, 1) in the plane 3x y + 4z = 2.
- 18. Find the length and the foot of perpendicular from the point (7, 14, 5) to the plane 2x + 4y z = 2.
- 19. Find the reflection of the point (1, 2 1) in the plane 3x 5y + 4z = 5.
- 20. Find the coordinate of the foot of perpendicular drawn from the point (5, 4, 2) to the line $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$. Hence or otherwise deduce the length of the perpendicular.
- 21. Find the image of the point with position vector $3\hat{i} + \hat{j} + 2\hat{k}$ in the plane $\vec{r} \cdot (2\hat{i} \hat{j} + \hat{k}) = 4$.
- 22. Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane $\vec{r} \cdot (\hat{\iota} 2\hat{j} + 4\hat{k}) + 5 = 0.$
- 23. The cartesian equation of a line AB is $\frac{2x-1}{\sqrt{3}} = \frac{y+2}{2} = \frac{z-3}{3}$. Find the direction cosines of a line parallel to AB.

24. Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$ intersect. Also find the

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

point of intersection.

- 25. Find the coordinates of the point where the line through the points (3, -4, -5) and (2, -3, 1) crosses the plane 2x + y + z = 7.
- 26. Find the vector and cartesian equation s of the planes containing the two lines
 - $\vec{r} = (2\hat{\imath} + \hat{\jmath} 3\hat{k}) + \lambda(\hat{\imath} + 2\hat{\jmath} + 5\hat{k}) \text{ and } \vec{r} = (3\hat{\imath} + 3\hat{\jmath} + 2\hat{k}) + \mu(3\hat{\imath} 2\hat{\jmath} + 5\hat{k}).$
- 27. Find the equation of the plane passing through the point (1, 1, 1) and containing the line $\vec{r} = (-3\hat{\imath} + \hat{\jmath} + 5\hat{k}) + \lambda (3\hat{\imath} - \hat{\jmath} - 5\hat{k})$. Also show that the plane contains the line $\vec{r} = (-\hat{\imath} + 2\hat{\jmath} + 5\hat{k}) + \lambda (\hat{\imath} - 2\hat{\jmath} - 5\hat{k})$.
- 28. Two airships are moving in space along the lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ and $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ An astronaut wants to move from one ship to another ship when the two airships are closest. What is the least distance between the airships?
- 29. A bird is located at A (3, 2, 8). She wants to move to the plane 3x + 2y + 6z + 16 = 0 in shortest time. Find the distance she covered.
- 30. By computing the shortest distance determine whether the following pairs of lines intersect or not:

$$\frac{x-1}{2} = \frac{y+1}{3} = z$$
 and $\frac{x+1}{5} = \frac{y-2}{1} = z = 2$.

- 31. From a point A (2, 3, 8) in space, a shooter aims to hit the target at P(6, 5, 11). If the line of fire is $\frac{x-2}{4} = \frac{y-3}{2} = \frac{z-8}{3}$, what you think about the success of the shooter?
- 32. An astronaut at A(7, 14, 5) in space wants to reach a point P on the plane 2x + 4y z = 2 when AP is least. Find the position of P and also the distance AP travelled by the astronaut.
- 33. Find the distance of the point (3, 4, 5) from the plane x + y + z = 2 measured parallel to the line 2x = y = z.

Answer key

1. 5x - 7y + 11z + 4 = 0 2. x + y - z = 13. 18x + 17y + 4z = 49 5. i. 17 ii. 2 6. 5x + 9y + 11z - 8 = 07. 2x - 4y + 3z - 8 = 08. x + 2y + 5z = 09. x + y - 2z + 4 = 010. 2x - y + 3z + 8 = 0 11. $\vec{r} \cdot (2\hat{i} + \hat{j} + 2\hat{k}) + 3 = 0$ and $\vec{r} \cdot (-\hat{i} + 2\hat{j} - 2\hat{k}) + 3 = 0$ 13. 4x - y - 2z - 6 = 0 14. x + y + z = 0 15. x - 2y + z = 012. m = -216. $\vec{r} \cdot (\hat{\imath} - 2\hat{\jmath} + \hat{k}) + 7 = 0$ 17. (0, -1, -3)18. (1, 2, 8); $3\sqrt{21}$ units19. (73/25, -6/5, 39/25)20. (1, 6, 0); $2\sqrt{6}$ units21. (1, 2, 1) 16. $\vec{r} \cdot (\hat{\iota} - 2\hat{\jmath} + \hat{k}) + 7 = 0$ 22. $\frac{13}{12}\sqrt{6}$; (-1/12, 25/12, -2/12) 23. $\frac{\sqrt{3}}{\sqrt{55}}$, $\frac{4}{\sqrt{55}}$, $\frac{6}{\sqrt{55}}$ 24. (-1, -1, -1) 25. (1, -2, 7) 26. $\vec{r} \cdot (10\hat{\imath} + 5\hat{\jmath} - 4\hat{k}) - 37 = 0; 10x + 5y - 4z - 37 = 0$ 27. x - 2y + z = 028. $2\sqrt{29}$ units 29. 11 units 30. lines do not intersect 32. P(1, 2, 8); $3\sqrt{21}$ units 31. he will be successful 33. 6 units

Downloaded from www.studiestoday.com