Downloaded from www.studiestoday.com

Chapter: - Vectors and three -Dimensional Geometry

1 marks question

Q1. For what value of p, the vectors $2 \hat{i}-3 \hat{j}$ and $p \hat{i}-6 \hat{j}$ are parallel. Ans. 4,
Q2. Find the angle between the vectors $\hat{i}-\hat{j}$ and $\hat{i}+\hat{j}$. Ans. 90°
Q3.Find a unit vector perpendicular to $2 \hat{i}-\hat{j}+\hat{k}$, and $3 \hat{i}-4 \hat{j}-\hat{k}$. Ans. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$,
Q4.If $\mathrm{P}(1,5,4)$ and $\mathrm{Q}(4,1,-2)$ Find direction ratio and direction cosines of $P \vec{Q}$, Ans. $(3,-4,-6), \frac{3}{\sqrt{61}}, \frac{-4}{\sqrt{61}}, \frac{-6}{\sqrt{61}}$
Q5. $|\vec{a}|=10,|\vec{b}|=2$, and $\vec{a} \cdot \vec{b}=12$, Find $|\vec{a} \times \vec{b}|$
Ans. 16
Q6. $|\vec{a}|=2,|\vec{b}|=5$, and $|\vec{a} \times \vec{b}|=8$, Find $\vec{a} \cdot \vec{b}$,
Ans. ± 6
Q7.Find the value of $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j}) \quad$ Ans. 1
Q8.If α is the angle between any two vector \vec{a} and \vec{b} such that $|\vec{a} \times \vec{b}|=|\vec{a} \cdot \vec{b}|$. Find the value of α Ans. $\pi / 4$
Q9. Find the projection of the vector $\hat{i}+\hat{j}+\hat{k}$ on the vector \hat{i}, Ans. 1
Q10. For what value of λ the vectors $2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\hat{i}-2 \hat{j}+3 \hat{k}$ are perpendicular to each other. Ans.5/2
Q11. The x-coordinate of a point on the line joining the points $Q(2,2,1)$ and $R(5,1,-2)$ is 4 Find its z coordinate. Ans. -1

Q12. Find distance of the point $(-2,4,-5)$ from the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$, Ans. $\sqrt{\frac{37}{10}}$

4/6 marks question

Q13. Express the vector $\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as sum of two vectors such that one is parallel to the $\vec{b}=3 \hat{i}+\hat{k}$ and the other is perpendicular to \vec{b}. Ans. $6 \hat{i}+2 \hat{k},-\hat{i}-2 \hat{j}+3 \hat{k}$

Q14. If the vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$, and $\vec{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k}$ are coplanar. Find the value of λ. Ans. 2

Q15. Given that $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}-3 \hat{k}$, and $\vec{c}=\hat{i}+4 \hat{k}$ verify that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
Q16. If the vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$ find a vector \vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$
Ans. $\frac{5}{3} \hat{i}+\frac{2}{3} \hat{j}+\frac{2}{3} \hat{k}$
Q17. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ then prove that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
Q18. For any vectors \vec{a}, \vec{b} and \vec{c} evaluate $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b}) \quad$ Ans. $0 \quad$ P.T.O.

Downloaded from www.studiestoday.com

Q19. Find the unit vector perpendicular to the plane $A B C$, where the position vectors of A, B, and C are $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+2 \hat{k}$, and $2 \hat{i}+3 \hat{k}$ respectively. Ans. $\frac{3}{\sqrt{14}} \hat{i}+\frac{2}{\sqrt{14}} \hat{j}-\frac{1}{\sqrt{14}} \hat{k}$ Q20. Show that the area of parallelogram having diagonals $3 \hat{i}+\hat{j}-2 \hat{k}$ and $2 \hat{i}-6 \hat{j}+8 \hat{k}$ is $10 \sqrt{3}$ sq units.

Q21. If $\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq 0$ then prove that $\vec{a}+\vec{b}=\lambda \vec{c}$ where λ is a scalar.
Q22. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ then prove that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$,
Q23. . If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$ prove that $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles and $|\vec{b}|=1,|\vec{c}|=|\bar{a}|$

Q24. Find the distance between the planes $4 x-2 y+4 z+5=0$ and $2 x-y+2 z+3=0$, Ans. $1 / 6$
Q25. Find the equation of the plane through $(3,4,-1)$ which is parallel to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})+2=0$
,Ans. $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})+11=0$,
Q26. Find the equation of the plane passing through the point $(1,-1,2)$ and $(2,-2,2)$ and which is perpendicular to the plane $6 x-2 y+2 z=9$, Ans. $x+y-2 z+4=0$,

Q27 Find the equation of the plane passing through the point($-1,-1,2$) and perpendicular to each of the following planes; $2 x+3 y-3 z=2$, and $5 x-4 y+z=6$, Ans. $9 x+17 y+23 z-20=0$,

Q28. Find the equation of the plane which meets the axes in A, B, C given that the centroid of the triangle ABC is the point (α, β, γ), Ans. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$,

Q29.Find the length and the foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$, Ans. $3 \sqrt{21}$ and (1, 2, 8)

Q30. Find the length and the foot of the perpendicular drawn from the point $(2,-1,5)$ to the line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11} \quad$ Ans. $\sqrt{1} 4$ and $(1,2,3)$

Q31. Find the image of the point $(1,2,3)$ on the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$ Ans. $(5,8,15)$
Q32 Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $2 x+3 y-z+4=0$, and parallel to x-axis, Ans. $y-3 z+6=0$,

Q33. Find the S.D between the lines whose vector equation are:- $\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ and $\vec{r}=(2 \hat{i}+4 \hat{j}+5 \hat{k})+\mu(4 \hat{i}+6 \hat{j}+8 \hat{k})$ Ans. $\frac{\sqrt{5}}{\sqrt{29}}$

Q34. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2}$ and $\frac{x-1}{3 \lambda}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular then find the value of λ. Ans. -10/7

