Chapter: - Vectors and three – Dimensional Geometry

1 marks question

Q1. For what value of p, the vectors $2\hat{i} - 3\hat{j}$ and $p\hat{i} - 6\hat{j}$ are parallel. **Ans. 4**,

Q2. Find the angle between the vectors $\hat{i} - \hat{j}$ and $\hat{i} + \hat{j}$. **Ans. 90**^o

Q3. Find a unit vector perpendicular to $2\hat{i} - \hat{j} + \hat{k}$, and $3\hat{i} - 4\hat{j} - \hat{k}$. **Ans.** $\frac{1}{\sqrt{3}}(\hat{i} + \hat{j} - \hat{k})$,

Q4.If P(1, 5, 4) and Q (4, 1,-2) Find direction ratio and direction cosines of $P\vec{Q}$, Ans. (3,-4,-6), $\frac{3}{\sqrt{61}}, \frac{-4}{\sqrt{61}}, \frac{-6}{\sqrt{61}}$

Q5. $|\vec{a}| = 10$, $|\vec{b}| = 2$, and $\vec{a} \cdot \vec{b} = 12$, Find $|\vec{a} \times \vec{b}|$ **Ans.** 16

Q6. $|\vec{a}| = 2$, $|\vec{b}| = 5$, and $|\vec{a} \times \vec{b}| = 8$, Find $\vec{a} \cdot \vec{b}$, **Ans.** ±6

Q7. Find the value of $\hat{i}.(\hat{j} \times \hat{k}) + \hat{j}.(\hat{i} \times \hat{k}) + \hat{k}.(\hat{i} \times \hat{j})$ **Ans.** 1

Q8. If α is the angle between any two vector \vec{a} and \vec{b} such that $|\vec{a} \times \vec{b}| = |\vec{a} \cdot \vec{b}|$. Find the value of α **Ans**. $\pi/4$

Q9. Find the projection of the vector $\hat{i} + \hat{j} + \hat{k}$ on the vector \hat{i} , **Ans**. 1

Q10. For what value of λ the vectors $2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other. **Ans.**5/2

Q11. The x-coordinate of a point on the line joining the points Q (2, 2, 1) and R (5, 1,-2) is 4 Find its z-coordinate. **Ans**. -1

Q12. Find distance of the point (-2, 4,-5) from the line $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$, **Ans.** $\sqrt{\frac{37}{10}}$

4/6 marks question

Q13. Express the vector $\vec{a} = 5\hat{i} - 2\hat{j} + 5\hat{k}$ as sum of two vectors such that one is parallel to the vector $\vec{b} = 3\hat{i} + \hat{k}$ and the other is perpendicular to \vec{b} . **Ans.** $6\hat{i} + 2\hat{k}$, $-\hat{i} - 2\hat{j} + 3\hat{k}$

Q14. If the vectors $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$, and $\vec{c} = 3\hat{i} + \lambda\hat{j} + 5\hat{k}$ are coplanar. Find the value of λ . **Ans.** 2

Q15. Given that $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} - 3\hat{k}$, and $\vec{c} = \hat{i} + 4\hat{k}$ verify that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

Q16. If the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$ find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$ **Ans.** $\frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$

Q17. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ **Q18.** For any vectors \vec{a} , \vec{b} and \vec{c} evaluate $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$ **Ans.** 0 **P.T.O.**

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Q19. Find the unit vector perpendicular to the plane ABC , where the position vectors of A,B, and C are

$$2\hat{i} - \hat{j} + \hat{k}$$
, $\hat{i} + \hat{j} + 2\hat{k}$, and $2\hat{i} + 3\hat{k}$ respectively. **Ans**. $\frac{3}{\sqrt{14}}\hat{i} + \frac{2}{\sqrt{14}}\hat{j} - \frac{1}{\sqrt{14}}\hat{k}$

Q20. Show that the area of parallelogram having diagonals $3\hat{i} + \hat{j} - 2\hat{k}$ and $2\hat{i} - 6\hat{j} + 8\hat{k}$ is $10\sqrt{3}$ sq units.

Q21. If $\vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq 0$ then prove that $\vec{a} + \vec{b} = \lambda \vec{c}$ where λ is a scalar.

Q22. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ then prove that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$,

Q23. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$ prove that \vec{a} , \vec{b} , \vec{c} are mutually at right angles and $|\vec{b}| = 1$, $|\vec{c}| = |\vec{a}|$

Q24. Find the distance between the planes 4x-2y + 4z+5=0 and 2x-y+2z+3=0, **Ans**. 1/6

Q25. Find the equation of the plane through (3,4,-1) which is parallel to the plane $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 5\hat{k}) + 2 = 0$,**Ans.** $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 5\hat{k}) + 11 = 0$,

Q26. Find the equation of the plane passing through the point (1,-1, 2) and (2, -2, 2) and which is perpendicular to the plane 6x-2y+2z = 9, **Ans**. x+y-2z+4=0,

Q27 Find the equation of the plane passing through the point(-1,-1,2) and perpendicular to each of the following planes;2x+3y-3z=2,and 5x-4y+z=6, **Ans**. 9x+17y+23z-20=0,

Q28. Find the equation of the plane which meets the axes in A, B, C given that the centroid of the triangle ABC is the point (α,β,γ), **Ans**. $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$,

Q29. Find the length and the foot of the perpendicular from the point (7,14,5) to the plane 2x+4y-z=2, Ans. $3\sqrt{21}$ and (1, 2, 8)

Q30. Find the length and the foot of the perpendicular drawn from the point (2,-1,5) to the line $\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11}$ Ans. $\sqrt{14}$ and (1, 2, 3)

Q31. Find the image of the point (1, 2, 3) on the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$ **Ans**. (5, 8, 15)

Q32 Find the equation of the plane passing through the line of intersection of the planes $\vec{r}.(\hat{i} + \hat{j} + \hat{k}) = 1$ and 2x + 3y - z + 4 = 0, and parallel to x-axis, **Ans**. y-3z+6=0,

Q33. Find the S.D between the lines whose vector equation are:- $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$ and

$$\vec{r} = (2\hat{i} + 4\hat{j} + 5\hat{k}) + \mu(4\hat{i} + 6\hat{j} + 8\hat{k})$$
 Ans. $\frac{\sqrt{5}}{\sqrt{29}}$

Q34. If the lines $\frac{x-1}{-3} = \frac{y-2}{2\lambda} = \frac{z-3}{2}$ and $\frac{x-1}{3\lambda} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular then find the value of λ . Ans. -10/7

-----Best of Luck------

Downloaded from www.studiestoday.com