Downloaded from www.studiestoday.com

TOPIC 10
 THREE DIMENSIONAL GEOMETRY
 SCHEMATIC DIAGRAM

Topic	Concept	Degree of importance	Refrence NCERT Text Book Edition 2007
Three Dimensional Geometry	(i) Direction Ratios and Direction Cosines	*	Ex No 2 Pg -466 Ex No 5 Pg - 467 Ex No 14 Pg - 480
	(ii)Cartesian and Vector equation of a line in space \& conversion of one into another form	**	$\begin{aligned} & \text { Ex No } 8 \text { Pg -470 } \\ & \text { Q N. 6, 7, - Pg } 477 \\ & \text { QN 9 - Pg } 478 \end{aligned}$
	(iii)Co-planer and skew lines	*	Ex No 29 Pg -496
	(iv) Shortest distance between two lines	***	Ex No 12 Pg -476 Q N. 16, $17-\operatorname{Pg} 478$
	(v) Cartesian and Vector equation of a plane in space \& conversion of one into another form	**	Ex No 17 Pg -482 Ex No 18 Pg - 484 Ex No 19 Pg-485 Ex No $27 \mathrm{Pg}-495$ Q N. 19, $20-\operatorname{Pg} 499$
	(vi) Angle Between (iv) Two lines (v) Two planes (vi) Line \& plane	$\begin{gathered} * \\ * \\ * \end{gathered}$	Ex No 9 Pg -472 Q N. 11 - Pg 478 Ex No 26 Pg - 494 Q N. 12 - Pg 494 Ex No 25 Pg - 492
	(vii) Distance of a point from a plane	**	$\begin{aligned} & \text { Q No } 18 \mathrm{Pg}-499 \\ & \text { Q No } 14 \mathrm{Pg}-494 \end{aligned}$
	(viii)Distance measures parallel to plane and parallel to line	**	
	(ix)Equation of a plane through the intersection of two planes	***	Q No 10 Pg -493
	(x) Foot of perpendicular and image with respect to a line and plane	**	Ex. N 16 Pg 481

SOME IMPORTANT RESULTS/CONCEPTS

[^0]
Downloaded from www.studiestoday.com

Anythree numbers proportionl to direction cosines are direction ratios denoted by a, b, c

$$
\frac{1}{\mathrm{a}}=\frac{\mathrm{m}}{\mathrm{~b}}=\frac{\mathrm{n}}{\mathrm{c}} \quad \mathrm{l}= \pm \frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}, \quad \mathrm{~m}= \pm \frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}, \quad \mathrm{n}= \pm \frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}
$$

* Direction ratios of a line segment joining $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ may be taken as $\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}, \mathrm{z}_{2}-\mathrm{z}_{1}$
* Angle between twolines whosedirection cosines are $l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $\mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ is given by

$$
\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=\frac{\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}}{\sqrt{\left(\mathrm{a}_{1}{ }^{2}+\mathrm{b}_{1}{ }^{2}+\mathrm{c}_{1}{ }^{2}\right)\left(\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2}+\mathrm{c}_{2}{ }^{2}\right)}}
$$

* For parallellines $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ and
for perpendicular lines $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$ or $\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}=0$
** STRAIGHTLINE:
* Equation of line passing through a point $\left(x_{1}, y_{1}, z_{1}\right)$ with direction cosines $a, b, c: \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
* Equation of line passing through a point $\left(x_{1}, y_{1}, z_{1}\right)$ and parallel to the line: $\frac{x-\alpha}{a}=\frac{y-\beta}{b}=\frac{z-\gamma}{c}$ is $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{a}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{c}}$
* Equation of line passin g through two point $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
* Equation of line (Vector form)

Equation of line passing through a point \vec{a} and in the direction of \vec{b} is $\vec{r}=\vec{a}+\lambda \vec{b}$

* Equation of line passing through two points $\vec{a} \& \vec{b}$ and in the direction of \vec{b} is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$
* Shortest distance between two skew lines: if lines are $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}} \vec{r}=\overrightarrow{\mathrm{a}_{2}}+\lambda \overrightarrow{\mathrm{b}_{2}}$
then Shortest distance $=\frac{\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|} ; \overrightarrow{b_{1}} \times \overrightarrow{b_{2}} \neq 0$

$$
\frac{\left|\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right) \times \overrightarrow{\mathrm{b}_{1}}\right|}{\left|\overrightarrow{\mathrm{b}_{1}}\right|} ; \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=0
$$

**PLANE:

* Equation of plane is $a x+b y+c z+d=0$ where $a, b \& c$ are direction ratios of normal to the plane
* Equation of plane passing through a point $\left(x_{1}, y_{1}, z_{1}\right)$ is $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
* Equation of plane in intercept form is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, where a, b, c are int erceptson the axes
* Equation of plane in normal form $1 \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{p}$ where $1, \mathrm{~m}, \mathrm{n}$ are direction cos ines of normal to the plane p is length of perpendicular form origin to the plane

Downloaded from www.studiestoday.com

* Equation of plane passing through three points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}\right)$

$$
\left|\begin{array}{ccc}
\mathrm{x}-\mathrm{x}_{1} & \mathrm{y}-\mathrm{y}_{1} & \mathrm{z}-\mathrm{z}_{1} \\
\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\
\mathrm{x}_{3}-\mathrm{x}_{1} & \mathrm{y}_{3}-\mathrm{y}_{1} & \mathrm{z}_{3}-\mathrm{z}_{1}
\end{array}\right|=0
$$

* Equation of plane passing through two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and perpendicular to the plane $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ or parralal totheline $\frac{x-\alpha_{1}}{a_{1}}=\frac{y-\beta_{1}}{b_{1}}=\frac{z-\gamma_{1}}{c_{1}}$ is $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1}\end{array}\right|=0$
* Equation of plane passing through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and perpendicular to the
planes $a_{1} x+b_{1} y+c_{1} z+d_{1}=0, a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ or parralal to thelines $\frac{x-\alpha_{1}}{a_{1}}=\frac{y-\beta_{1}}{b_{1}}=\frac{z-\gamma_{1}}{c_{1}}$
and $\frac{x-\alpha_{2}}{a_{2}}=\frac{y-\beta_{2}}{b_{2}}=\frac{z-\gamma_{2}}{c_{2}}$ is $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
* Equation of plane contaning the line $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and passing through the point $\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|\begin{array}{ccc}
\mathrm{x}-\mathrm{x}_{1} & \mathrm{y}-\mathrm{y}_{1} & \mathrm{z}-\mathrm{z}_{1} \\
\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1}
\end{array}\right|=0
$$

* Condition for coplaner lines $: \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ are coplaner if $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$ and equation of common planeis $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
* Equation of plane passing through the int er sec tion of twoplanes $a_{1} x+b_{1} y+c_{1} z=0, a_{2} x+b_{2} y+c_{2} z=0$ is $\left(\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}\right)+\lambda\left(\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}\right)=0$
$*$ Perpendicular dis tan ce from the point $\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$ is $\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}$
* Distance between two parallel planes $a x+b y+c z+d_{1}=0, a x+b y+c z+d_{2}=0$ is $\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+\mathrm{c}^{2}}}$

ASSIGNMENTS

(i)Direction Ratios and Direction Cosines

LEVEL-I

Downloaded from www.studiestoday.com

1. Write the direction-cosines of the line joining the points $(1,0,0)$ and $(0,1,1)$ [CBSE 2011]
2.Find the direction cosines of the line passing through the following points $(-2,4,-5),(1,2,3)$.
3.Write the direction cosines of a line equally inclined to the three coordinate axes

LEVEL-II

1.Write the direction cosines of a line parallel to the line $\frac{3-x}{3}=\frac{y+2}{-2}=\frac{z+2}{6}$.
2. Write the direction ratios of a line parallel to the line $\frac{5-x}{3}=\frac{y+7}{-2}=\frac{z+2}{6}$.
3. If the equation of a line $\mathrm{AB} \quad \frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+6}{3}$ Find the direction cosine.
4. Find the direction cosines of a line, passing through origin and lying in the first octant, making equal angles with the three coordinate axis.
(ii) Cartesian and Vector equation of a line in space \& conversion of one into another form

LEVEL-I

1. Write the vector equation of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$.
[CBSE 2011]
2. Write the equation of a line parallel to the line $\frac{x-2}{-3}=\frac{y+3}{2}=\frac{z+5}{6}$ and passing through the point $(1,2,3)$.
3.Express the equation of the plane $\vec{r}=(\hat{\imath}-2 \hat{\jmath}+\hat{k})+\lambda(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})$ in the Cartesian form.
4.Express the equation of the plane $\vec{r} \cdot(2 \hat{\imath}-3 \hat{\jmath}+\hat{k})+4=0$ in the Cartesian form.

(iii) Co-planer and skew lines

LEVEL-II

1. Find whether the lines $\vec{r}=(\hat{\imath}-\hat{\jmath}-\hat{k})+\lambda(2 \hat{\imath}+\hat{\jmath})$ and $\vec{r}=(2 \hat{\imath}-\hat{\jmath})+\mu(\hat{\imath}+\hat{\jmath}-\hat{k})$ intersect or not.

If intersecting, find their point of intersection.
2.Show that the four points $(0,-1,-1),(4,5,1),(3,9,4)$ and $(-4,4,4$,$) are coplanar. Also, find$ the equation of the plane containing them.
3.Show that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect. Find their point of intersection.

LEVEL-III

1. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar. Also find the equation of the plane.
2. The points $\mathrm{A}(4,5,10), \mathrm{B}(2,3,4)$ and $\mathrm{C}(1,2,-1)$ are three vertices of a parallelogram ABCD . Find

Downloaded from www.studiestoday.com

the vector equation of the sides AB and BC and also find the coordinates
3.Find the equations of the line which intersects the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \quad$ and $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$ and passes through the point $(1,1,1)$.
4. Show that The four points $(0,-1,-1),(4,5,1),(3,9,4)$ and $(-4,4,4)$ are coplanar and find the equation of the common plane.

(iv) Shortest distance between two lines

LEVEL-II

1. Find the shortest distance between the lines 1_{1} and 1_{2} given by the following:
(a) $1_{1}: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{1} \quad 1_{2}: \frac{x-2}{2}=\frac{y+1}{1}=\frac{z+1}{2}$
(b) $\vec{r}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(\hat{\imath}-3 \hat{\jmath}+2 \hat{k})$

$$
\vec{r}=(4 \hat{\imath}+2 \mu) \hat{\imath}+(5+3 \mu) \hat{\jmath}+(6+\mu) \hat{k} .
$$

2. Show that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect. Find their point of intersection.
3.. Find the shortest distance between the lines

$$
\vec{r}=(\hat{i}+\hat{j})+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \text {, and } \vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+\mu(4 \hat{i}-2 \hat{j}+2 \hat{k})
$$

4.Find the shortest distance between the lines
$\vec{r}=(1-\mathrm{t}) \hat{\imath}+(\mathrm{t}-2) \hat{\jmath}+(3-\mathrm{t}) \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{r}}=(\mathrm{s}+1) \hat{\imath}+(2 \mathrm{~s}-1) \hat{\jmath}+(2 \mathrm{~s}+1) \hat{\mathrm{k}}[$ CBSE 2011]
5. Find the distance between the parallel planes $x+y-z=-4$ and $2 x+2 y-2 z+10=0$.
6. Find the vector equation of the line parallel to the line $\frac{x-1}{5}=\frac{3-y}{2}=\frac{z+1}{4}$ and passing through $(3,0,-4)$. Also, find the distance between these two lines.

(v) Cartesian and Vector equation of a plane in space \& conversion of one into another form

LEVEL I

1.Find the equation of a plane passing through the origin and perpendicular to x-axis
2. Find the equation of plane with intercepts $2,3,4$ on the $\mathrm{x}, \mathrm{y}, \mathrm{z}$-axis respectively.
3.Find the direction cosines of the unit vector perpendicular to the plane

$$
\overrightarrow{\mathrm{r}} \cdot(6 \hat{\imath}-3 \hat{\jmath}-2 \hat{\mathrm{k}})+1=0 \text { passing through the origin. }
$$

4.Find the Cartesian equation of the following planes:

$$
\begin{array}{ll}
\text { (a) } \mathrm{r} \cdot(\hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}})=2 & \text { (b) } \mathrm{r} \cdot(2 \hat{\imath}+3 \hat{\jmath}-4 \hat{\mathrm{k}})=1
\end{array}
$$

Downloaded from www.studiestoday.com

LEVEL II

1. Find the vector and cartesian equations of the plane which passes through the point $(5,2,-4)$ and perpendicular to the line with direction ratios $2,3,-1$.
2. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3 \mathrm{i}^{\wedge}+5^{\wedge} \mathrm{j}-6 \mathrm{k}$.
3.Find the vector and cartesian equations of the planes that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}^{\wedge}+\hat{j}-\mathrm{k}^{\wedge}$.

(vi) Angle Between(i)Two lines (ii)Two planes (iii)Line \& plane

LEVEL-I

1. Find the angle between the lines whose direction ratios are $(1,1,2)$ and $(\sqrt{3}-1,-\sqrt{3}-1,4)$.
2. Find the angle between line $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-3}{2}$ and the plane $3 x+4 y+z+5=0$.
3.Find the value of λ such that the line $\frac{x-2}{9}=\frac{y-1}{\lambda}=\frac{z+3}{-6}$ is perpendicular to the plane

$$
3 x-y-2 z=7
$$

4.Find the angle between the planes whose vector equations are
$r \cdot\left(2 i^{\wedge}+2 \wedge-3 k^{\wedge}\right)=5$ and $r \cdot\left(3 i^{\wedge}-3 \wedge j+5 k^{\wedge}\right)=3$
5. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.

LEVEL-II

1. Find the value of p , such that the lines $\frac{x}{1}=\frac{y}{3}=\frac{z}{2 p}$ and $\frac{x}{-3}=\frac{y}{5}=\frac{z}{2}$ are perpendicular to each other.
2. A line makes angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube, Prove that

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3} .
$$

(vii) Distance of a point from a plane

LEVELI

1. Write the distance of plane $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+1=0$ from the origins.
2. Find the point through which the line $2 x=3 y=4 z$ passes.
3. Find the distance of a point $(2,5,-3)$ from the plane $r \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$
4. Find the distance of the following plane from origin: $2 x-y+2 z+1=0$
5.Find the distance of the point (a, b, c) from x-axis

Downloaded from www.studiestoday.com

LEVELII

1..Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $\mathrm{P}(1,3,3)$.
2. Find the distance of the point $(3,4,5)$ from the plane $x+y+z=2$ measured parallel to the line $2 \mathrm{x}=\mathrm{y}=\mathrm{z}$.
3. Find the distance between the point $\mathrm{P}(6,5,9)$ and the plane determinedby the points

A $(3,-1,2), \mathrm{B}(5,2,4)$ and $\mathrm{C}(-1,-1,6)$.
4.Find the distance of the point $(-1,-5,-10)$ from the point of intersection of theline

$$
\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \text { and the plane } \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})=5
$$

[CBSE2011]

LEVEL III

1.Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point $(1,3,4)$ from the plane $2 x-y+z+3=0$. Find also, the image of the point in the plane.
2. Find the distance of the point $\mathrm{P}(6,5,9)$ from the plane determined by the points $\mathrm{A}(3,-1,2)$, $\mathrm{B}(5,2,4)$ and $\mathrm{C}(-1,-1,6)$.
3. Find the equation of the plane containing the lines $\vec{r}=\hat{\imath}+\hat{\jmath}+\lambda(\hat{\imath}+2 \hat{\jmath}-\hat{k})$ and $\vec{r}=\hat{\imath}+\hat{\jmath}+\mu(-\hat{\imath}+\hat{\jmath}-2 \hat{k})$. Find the distance of this plane from origin and also from the point $(1,1,1)$.

(viii) Equation of a plane through the intersection of two planes

LEVELII

1.Find the equation of plane passing through the point $(1,2,1)$ and perpendicular to the line joining the points $(1,4,2)$ and $(2,3,5)$. Also find the perpendicular distance of the plane from the origin. 2.Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$. 3.Find the equation of the plane that contains the point $(1,-1,2)$ and is perpendicular to each of the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.

LEVEL-III

1.Find the equation of the plane passing through the point $(1,1,1)$ and containing the line $\vec{r}=(-3 \hat{\imath}+\hat{\jmath}+5 \hat{k})+\lambda(3 \hat{\imath}-\hat{\jmath}-5 \hat{k})$. Also, show that the plane contains the line
$\vec{r}=(-\hat{\imath}+2 \hat{\jmath}+5 \hat{k})+\lambda(\hat{\imath}-2 \hat{\jmath}-5 \hat{k})$.
2.Find the equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $x+2 y+3 z-7=0$ and $2 x-3 y+4 z=0$.
3.Find the Cartesian equation of the plane passing through the points $\mathrm{A}(0,0,0)$ and $\mathrm{B}(3,-1,2)$ and parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$
4. Find the equation of the perpendicular drawn from the point $\mathrm{P}(2,4,-1)$ to the line

$$
\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9} .
$$

Downloaded from www.studiestoday.com

(ix)Foot of perpendicular and image with respect to a line and plane

LEVEL II

1. Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane determined by points $\mathrm{A}(1,2,3), \mathrm{B}(2,2,1)$ and $\mathrm{C}(-1,3,6)$.
2. Find the foot of the perpendicular from $\mathrm{P}(1,2,3)$ on the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$. Also, obtain the equation of the plane containing the line and the point $(1,2,3)$.
3.Prove that the image of the point $(3,-2,1)$ in the plane $3 x-y+4 z=2$ lies on the plane,
$x+y+z+4=0$.

LEVEL-III

1.Find the foot of perpendicular drawn from the point $A(1,0,3)$ to the joint of the points $B(4,7,1)$ and $\mathrm{C}(3,5,3)$.
2. Find the image of the point $(1,-2,1)$ in the line $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z+3}{2}$.
3. The foot of the perpendicular from the origin to the plane is $(12,-4,3)$. Find the equation of the plane
4. Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point $P(3,2,1)$ from the plane $2 x-y+z+1=0$. Find also, the image of the point in the plane.

Questions for self evaluation

1. Find the equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $x+2 y+3 z-7=0$ and $2 x-3 y+4 z=0$.
2. Find the vector equation of a line joining the points with position vectors $\hat{i}-2 \hat{j}-3 \hat{k}$ and parallel to the line joining the points with position vectors $\hat{i}-\hat{j}+4 \hat{k}$, and $2 \hat{i}+\hat{j}+2 \hat{k}$. Also find the cartesian equivalent of this equation.
3. Find the foot of perpendicular drawn from the point $A(1,0,3)$ to the joint of the points $B(4,7,1)$ and $\mathrm{C}(3,5,3)$.
4. Find the shortest distance between the lines
$\vec{r}=(\hat{i}+\hat{j})+\lambda(2 \hat{i}-\hat{j}+\hat{k})$, and $\vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+\mu(4 \hat{i}-2 \hat{j}+2 \hat{k})$
5.Find the image of the point $(1,-2,1)$ in the line $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z+3}{2}$.
5. Show that the four points $(0,-1,-1),(4,5,1),(3,9,4)$ and $(-4,4,4)$ are coplanar and find the equation of the common plane.
6. The foot of the perpendicular from the origin to the plane is $(12,-4,3)$. Find the equation of the plane.
7. Show that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect. Find their point of intersection.
8. A line makes angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube, Prove that

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}
$$

[^0]: ** Direction cosines and direction ratios:
 If a line makes angles α, β and γ with x , y and z axes respectively the $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction \cos ines denoted by $\mathrm{l}, \mathrm{m}, \mathrm{n}$ respectively and $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$

