Downloaded from www.studiestoday.com

RELATIONS \& FUNCTIONS

KEY POINTS TO REMEMBER

- Relation R from set A to a set B is subset of $A \times B$.
- $\mathrm{A} \times \mathrm{B}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \in A, b \in B\}$.
- If $n(A)=r, n(B)=s$ from set A to B then $n(A x B)=r$ \& no. of relations $=2^{\text {rs }}$.
- \varnothing is a relation defined on set A ,called empty or void relation.
- $R=A x A$ is called universal relation.
- Reflexive relation : Relation R defined on set A is said to be reflexive iff (a, a) $\epsilon \mathrm{R} \forall$ $\mathrm{a} \in \mathrm{A}$.
- Symmetric Relation : Relation R defined on set A is said to be symmetric if $(a, b) \in R$, ($\mathrm{b}, \mathrm{a}) \in \mathrm{R} \forall \mathrm{a}, b \in \mathrm{~A}$.
- Transitive Relation : Relation R defined on set A is said to be transitive if $(a, b) \in R$, (b, c) $\in \mathrm{R}$ implies $(\mathrm{a}, \mathrm{c}) \varepsilon R \forall \mathrm{a}, b \in \mathrm{~A}$.
- Equivalence Relation: A relation R defined on set A is said to be equivalence relation iff it is reflexive, symmetric and transitive.
- One - One function: $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be one - one if distinct elements in A has distinct images in B. i.e. $\forall \mathrm{x}_{1}, \mathrm{x}_{2} \in$ A s.t. $\mathrm{x}_{1} \neq \mathrm{x}_{2}$ this implies .f($\mathrm{x}_{1} \neq f\left(\mathrm{x}_{2}\right)$

OR
$\forall \mathrm{x}_{1}, \mathrm{x}_{2} \in$ A s.t. $. \mathrm{f}\left(\mathrm{x}_{1}\right)=f\left(\mathrm{x}_{2}\right)$ implies $\mathrm{x}_{1}=\mathrm{x}_{2}$

- One-one function is also called injective function.
- Onto function (surjective): A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be an onto iff $\mathrm{R}_{\mathrm{f}}=\mathrm{B}$ i.e. $\forall \mathrm{b} \epsilon$ B , there exist $\mathrm{a} \epsilon \mathrm{A}$,s.t. $\mathrm{f}(\mathrm{a})=\mathrm{b}$.
- Invertible function: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is invertible iff it is bijective.
- Binary Operation: A binary Operation * defined on set A is a function from A x A $\rightarrow \mathrm{A}$. * (a, b) is denoted by $\mathrm{a} * \mathrm{~b}$.
- Binary operation is commutative and associative in nature.
- If $*$ is a binary operation on A , then element $\mathrm{e} \epsilon \mathrm{A}$ is said to be the identity element iff $\mathrm{a} * \mathrm{e}=\mathrm{e} * \mathrm{a} \quad \forall \mathrm{a} \in \mathrm{A}$.
- Identity element is unique.
- If $*$ is a binary operation on A, then element b is said to be inverse of a $\epsilon \mathrm{A}$ iff $a^{*} b=b^{*} a=e$
- Inverse of an element if exists, is unique.
- Total number of binary operations on a set consisting of n elements is $\boldsymbol{n}^{\boldsymbol{n}^{2}}$.
- Total number of binary commutative binary operations on a set consisting of n elements is $\boldsymbol{n}^{\frac{n(n-1)}{2}}$.
- If A and B are two non empty finite sets containing m and n elements respectively, then (i) Number of functions from A to $\mathrm{B}=\boldsymbol{n}^{\boldsymbol{m}}$.

Downloaded from www.studiestoday.com

(ii) Number of one - one functions from A to $\mathrm{B}=$

$$
\begin{cases}n_{c_{m} \times m!,} & \text { if, } n \geq m \\ 0, & \text { if } n<m\end{cases}
$$

(iii) Number of on - to functions from A to $\mathrm{B}=$

$$
\sum_{r=1}^{n}(-1)^{n-r} n_{c_{r}} r^{m}, \quad \text { if } \mathrm{m} \geq \mathrm{n}
$$

(iv) Number of one - one and onto functions from A to $\mathrm{B}=$

$$
\left\{\begin{array}{lr}
n!, & \text { if }, n=m \\
0, & \text { if } n \neq m
\end{array}\right.
$$

Total number of binary operations on a set consisting of n elements is $\boldsymbol{n}^{\boldsymbol{n}^{2}}$.

ASSIGNMENT

Q1. Discuss whether each of the following relations are reflexive, symmetric or transitive:
(i) Relation R_{1} on the set R of all real numbers defined as $\mathrm{R}_{1}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}-\mathrm{b} \geq 0\}$
(ii) $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}=\mathrm{b}\}$

Q2. Let $\mathrm{A}=\{1,2,3,4\}$ and let $\mathrm{f}=\{(1,4),(2,1),(3,3),(4,2)\}$ and $\mathrm{g}=\{(1,3),(2,1),(3,2)(4,4)\}$, find fog, gof, fof and gog.
Q3. Find gof and fog if (i) $f(x)=|x|$ and $g(x)=|5 x-2|$
(ii) $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

Q4. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined as $f(x)=x^{2}+3 x+1, g(x)=2 x-3$. Find fog and gof.
Q5. Let $f(x)=x^{2}-4 x+3 \quad x<3$

$$
\begin{aligned}
& =x-4 & & x \geq 3 \\
g(x) & =x-3 & & x<4 \\
& =x^{2}+2 x+2 & & x \geq 4
\end{aligned}
$$

Describe the function $\frac{f}{g}$.
Q6. $f(x)=x+1 \quad x \leq 1$
$=2 x+1 \quad 1<x \leq 2$
$\mathrm{g}(\mathrm{x})=\mathrm{x}^{2} \quad-1<\mathrm{x}<2$
$=\mathrm{x}+2 \quad 2 \leq x \leq 3$. Find fog and gof.
Q7. Are the following functions invertible in their respective domains? If so find the inverse of each.
(i) $\mathrm{f}(\mathrm{x})=\frac{x}{x+1}$
(ii) $f(x)=\sqrt{1-x^{2}}$

Q8. If the function $f: R \rightarrow R$ be defined by $f(x)=x^{2}+5 x+9$. Find $f^{-1}(8)$.
Q9. Let $S=\{0,1,2,3,4\}$ and $*$ be an operation on S defined by $a * b=a \oplus_{3} b$. Prepare operation table for \otimes_{3} and \oplus_{3}.
Q10. Let * be a binary operation on A defined by a * $b=\operatorname{LCM}$ of (a, b) for all $(a, b) \in N$. Find
(i) $3 * 4$
(ii) $5 * 7$
(iii) $20 * 16$
(iv) $6 * 9$

Q11. Find the number of binary operations on the set $\{3,4,5\}$ having identity element as 3 .
Q12. Find the number of binary operations on the set $\{6,7,8\}$ having identity element as 6 and $7^{-1}=7$, $8^{-1}=8$.
Q13. Check whether the following relations are functions or not. If yes, then find which functions are one one, onto or neither. $\mathrm{A}=\{2,4,6,8\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
(i) $\mathrm{f}=\{(4, \mathrm{a}),(6, \mathrm{c}),(8, \mathrm{a})\}$
cin

Downloaded from www.studiestoday.com

Q14. Check whether the following function $f: A \rightarrow B$ is invertible or not. Describe f^{-1}.
$A=\{1,2,3,4\} B=\{2,4,6,8\}, f(1)=2, f(2)=4, f(3)=6, f(4)=8$.
Q15. Determine whether the function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$ where $\mathrm{S}=\{1,2,3\}$ and $\mathrm{f}=\{(1,2),(2,1),(3,1)\}$ invertible or not.
Q16. Find the number of binary operations that can be defined on a set of 2 elements.
Q17. Find the number of binary operations on set $\{1,2,3\}$ having $e=3$ and $4^{-1}=4,5^{-1}=4$.
Q18. If R is the relation on $N \times N \rightarrow N$ defined by $(a, b) R(c, d)$ if $a+d=b+c$. Show that R is an equi valence relation.

Q19. Let a function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=3-4 \mathrm{x}$, prove that f is one one and onto.
Q20. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$ is not invertible.
Q21. Let $A=\{-1,0,1\}$ and $f=\left\{\left(x, x^{2}\right), x \in A\right\}$. Show that $f: A \rightarrow A$ is neither one one nor onto.
Q22. Show that $\mathrm{f}: \mathrm{R} \rightarrow\{\mathrm{x} \in \mathrm{R}:-1<\mathrm{x}<1\}$ defined by $\frac{x}{1+|x|}, \mathrm{x} \in \mathrm{R}$ is one one and onto.
Q23. If $\mathrm{f}:[0, \infty) \rightarrow[0, \infty)$ and $\mathrm{f}(\mathrm{x})=\frac{x}{1+x}$, show that f is one one but not onto.
Q24. Let $A=\{a, b, c)$. State the reason for the following where R_{1} and R_{2} are relations on A.
(i) $R_{1}=\{(a, a),(b, b),(a, c)\}$ is not reflexive.
(ii) $\mathrm{R}_{2}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}$ is not symmetric.

Q25. Let $\mathrm{A}=\mathrm{N} \times \mathrm{N}$ and let * be a binary operation on A defined by
$\left\{(a, b)^{*}(c, d)=(a d+b c)\right.$ for all $\left.(a, b),(c, d) \in N \times N\right\}$. Show that
(i) $*$ is commutative on A
(ii) $*$ is associative on A
(iii) * has no identity element.

ANSWER KEY

1.(i) Reflexive, Transitive (ii) Reflexive, Symmetric, Transitive
2. $\operatorname{fog}=\{(1,3),(2,4),(3,1),(4,2)\} ;$ gof $=\{(1,4),(2,3),(3,2),(4,1)\} ;$ fof $=\{(1,2),(2,4),(3,3),(4,1)\}$ $\operatorname{gog}=\{(1,2),(2,3),(3,1),(4,4)\}$
3. (i) (fog) $(\mathrm{x})=||5 x-2|| \quad$ (gof) $(\mathrm{x})=|5| \mathrm{x}|-2|$
(ii) (fog) (x) $=8 \mathrm{x} \quad$ (gof) $(\mathrm{x})=2 \mathrm{x}$
4. (fog) $(\mathrm{x})=4 \mathrm{x}^{2}-6 \mathrm{x}+1 \quad$ (gof) $(\mathrm{x})=2 \mathrm{x}^{2}+6 \mathrm{x}-1$
5. $\left(\frac{f}{g}\right)(\mathrm{x})=\left\{\begin{array}{c}x-1 \quad, x<3 \\ \frac{x-4}{x-3} \quad 3 \leq x<4 \\ \frac{x^{2}+2 x+2}{x-4} \quad, x \geq 4\end{array}\right.$
6. $(f o g)(x)=$
7. (i) Yes, $f^{-1}(x)=\frac{x}{1-x} \quad$ (ii) No
8. $\frac{-5+\sqrt{ } 21}{2}, \frac{-5-\sqrt{ } 21}{2}$
10. (i) 12 (ii) 35 (iii) 80 (iv) 18
11. 81
12. 9
13. (i) Not a function (ii) Function but not one one (why) (iii) Function but not onto (why)
14. Yes, $\mathrm{f}^{-1}=\{(2,1),(4,2),(6,3),(8,4)\}$
15. No (why)
16. 16
${ }_{17.3}^{10.30}$ Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

