CHAPTER 1

RELATIONS AND FUNCTIONS

IMPORTANT POINTS TO REMEMBER

- Relation R from a set A to a set B is subset of $A \times B$.
- $A \times B=\{(a, b): a \in A, b \in B\}$.
- If $n(A)=r, n(B)=s$ from set A to set B then $n(A \times B)=r s$.
and no. of relations $=2^{r s}$
- $\quad \phi$ is also a relation defined on set A, called the void (empty) relation.
- $\quad R=A \times A$ is called universal relation.
- Reflexive Relation : Relation R defined on set A is said to be reflexive iff $(a, a) \in R \forall a \in A$
- Symmetric Relation : Relation R defined on set A is said to be symmetric iff $(a, b) \in R \Rightarrow(b, a) \in R \forall a, b, \in A$
- Transitive Relation : Relation R defined on set A is said to be transitive if $(a, b) \in R,(b, c) \in R \Rightarrow(a, c) \in R \forall a, b, c \in R$
- Equivalence Relation : A relation defined on set A is said to be equivalence relation iff it is reflexive, symmetric and transitive.
- One-One Function : $f: A \rightarrow B$ is said to be one-one if distinct elements in A has distinct images in B. i.e. $\forall x_{1}, x_{2} \in A$ s.t. $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

OR

$$
\begin{aligned}
\forall x_{1}, x_{2} \in A \text { s.t. } f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow x_{1} & =x_{2}
\end{aligned}
$$

One-one function is also called injective function.

Downloaded from www.studiestoday.com

- Onto function (surjective) : A function $f: A \rightarrow B$ is said to be onto iff $R_{f}=B$ i.e. $\forall b \in B$, there exist $a \in A$ s.t. $f(a)=b$
- A function which is not one-one is called many-one function.
- A function which is not onto is called into.
- Bijective Function : A function which is both injective and surjective is called bijective.
- Composition of Two Function : If $f: A \rightarrow B, g: B \rightarrow C$ are two functions, then composition of f and g denoted by gof is a function from A to C given by, ($g \circ f$) $(x)=g(f(x)) \forall x \in A$

Clearly gof is defined if Range of $f \subset$ domain of g. Similarly fog can be defined.

- Invertible Function : A function $f: X \rightarrow Y$ is invertible iff it is bijective.

If $f: X \rightarrow Y$ is bijective function, then function $g: Y \rightarrow X$ is said to be inverse of f iff $f \circ g=I_{y}$ and $g \circ f=I_{x}$
when I_{x}, I_{y} are identity functions.

- g is inverse of f and is denoted by f^{-1}.
- Binary Operation : A binary operation ${ }^{*}$, defined on set A is a function from $A \times A \rightarrow A$. * (a, b) is denoted by $a^{*} b$.
- Binary operation * defined on set A is said to be commutative iff

$$
a^{*} b=b^{*} a \forall a, b \in A .
$$

- Binary operation * defined on set A is called associative iff $a^{*}\left(b^{*} c\right)$ $=(a * b)^{*} c \forall a, b, c \in A$
- If * is Binary operation on A, then an element $e \in A$ is said to be the identity element iff a * $e=e$ * $a \forall a \in A$
- Identity element is unique.
- If * is Binary operation on set A, then an element b is said to be inverse of $a \in A$ iff $a * b=b^{*} a=e$
- Inverse of an element, if it exists, is unique.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. If A is the set of students of a school then write, which of following relations are. (Universal, Empty or neither of the two).

$$
\begin{aligned}
& R_{1}=\{(a, b): a, b \text { are ages of students and }|a-b| \geq 0\} \\
& R_{2}=\{(a, b): a, b \text { are weights of students, and }|a-b|<0\} \\
& R_{3}=\{(a, b): a, b \text { are students studying in same class }\}
\end{aligned}
$$

2. Is the relation R in the set $A=\{1,2,3,4,5\}$ defined as $R=\{(a, b): b$ $=a+1\}$ reflexive?
3. If R, is a relation in set N given by

$$
R=\{(a, b): a=b-3, b>5\}
$$

then does elements $(5,7) \in R$?
4. If $f:\{1,3\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,2,3,4\}$ be given by

$$
f=\{(1,2),(3,5)\}, g=\{(1,3),(2,3),(5,1)\}
$$

Write down gof.
5. Let $g, f: R \rightarrow R$ be defined by

$$
g(x)=\frac{x+2}{3}, f(x)=3 x-2 . \text { Write fog. }
$$

6. If $f: R \rightarrow R$ defined by

$$
f(x)=\frac{2 x-1}{5}
$$

be an invertible function, write $f^{-1}(x)$.
7. If $f(x)=\frac{x}{x+1} \forall x \neq-1$, Write fo $f(x)$.
8. Let * is a Binary operation defined on R, then if
(i) a * $b=a+b+a b$, write 3 * 2
(ii) $\quad a^{*} b=\frac{(a+b)^{2}}{3}$, Write $(2 * 3) * 4$.
9. If $n(A)=n(B)=3$, Then how many bijective functions from A to B can be formed?
10. If $f(x)=x+1, g(x)=x-1$, Then (gof) (3) $=$?
11. Is $f: N \rightarrow N$ given by $f(x)=x^{2}$ is one-one? Give reason.
12. If $f: R \rightarrow A$, given by

$$
f(x)=x^{2}-2 x+2 \text { is onto function, find set } A .
$$

13. If $f: A \rightarrow B$ is bijective function such that $n(A)=10$, then $n(B)=$?
14. If $n(A)=5$, then write the number of one-one functions from A to A .
15. $R=\{(a, b): a, b \in N, a \neq b$ and a divides $b\}$. Is R reflexive? Give reason?
16. Is $f: R \rightarrow R$, given by $f(x)=|x-1|$ is one-one? Give reason?
17. $f: R \rightarrow B$ given by $f(x)=\sin x$ is onto function, then write set B.
18. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, show that $f\left(\frac{2 x}{1+x^{2}}\right)=2 f(x)$.
19. If '*' is a binary operation on set Q of rational numbers given by $a^{*} b=\frac{a b}{5}$ then write the identity element in Q.
20. If * is Binary operation on N defined by $a * b=a+a b \forall a, b \in N$. Write the identity element in N if it exists.

SHORT ANSWER TYPE QUESTIONS (4 Marks)

21. Check the following functions for one-one and onto.
(a) $f: R \rightarrow R, f(x)=\frac{2 x-3}{7}$
(b) $f: R \rightarrow R, f(x)=|x+1|$
(c) $f: R-\{2\} \rightarrow R, f(x)=\frac{3 x-1}{x-2}$
(d) $\quad f: R \rightarrow[-1,1], f(x)=\sin ^{2} x$
22. Consider the binary operation * on the set $\{1,2,3,4,5\}$ defined by $a^{*} b=$ H.C.F. of a and b. Write the operation table for the operation *.
23. Let $f: R-\left\{\frac{-4}{3}\right\} \rightarrow R-\left\{\frac{4}{3}\right\}$ be a function given by $f(x)=\frac{4 x}{3 x+4}$. Show that f is invertible with $f^{-1}(x)=\frac{4 x}{4-3 x}$.
24. Let R be the relation on set $A=\{x: x \in Z, 0 \leq x \leq 10\}$ given by $R=\{(a, b):(a-b)$ is multiple of 4$\}$, is an equivalence relation. Also, write all elements related to 4.
25. Show that function $f: A \rightarrow B$ defined as $f(x)=\frac{3 x+4}{5 x-7}$ where $A=R-\left\{\frac{7}{5}\right\}, B=R-\left\{\frac{3}{5}\right\}$ is invertible and hence find f^{-1}.
26. Let * be a binary operation on Q. Such that a * $b=a+b-a b$.
(i) Prove that * is commutative and associative.
(ii) Find identify element of * in Q (if it exists).
27. If * is a binary operation defined on $R-\{0\}$ defined by $a^{*} b=\frac{2 a}{b^{2}}$, then check * for commutativity and associativity.
28. If $A=N \times N$ and binary operation * is defined on A as $(a, b) *(c, d)=(a c, b d)$.
(i) Check * for commutativity and associativity.
(ii) Find the identity element for * in A (If it exists).
29. Show that the relation R defined by $(a, b) R(c, d) \Leftrightarrow a+d=b+c$ on the set $N \times N$ is an equivalence relation.
30. Let * be a binary operation on set Q defined by a * $b=\frac{a b}{4}$, show that
(i) 4 is the identity element of * on Q .
(ii) Every non zero element of Q is invertible with

$$
a^{-1}=\frac{16}{a}, \quad a \in Q-\{0\}
$$

31. Show that $f: R_{+} \rightarrow R_{+}$defined by $f(x)=\frac{1}{2 x}$ is bijective where R_{+}is the set of all non-zero positive real numbers.
32. Consider $f: R_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$ show that f is invertible with $f^{-1}=\frac{\sqrt{x+6}-1}{3}$.
33. If '*' is a binary operation on R defined by $a^{*} b=a+b+a b$. Prove that * is commutative and associative. Find the identify element. Also show that every element of R is invertible except -1 .
34. If $f, g: R \rightarrow R$ defined by $f(x)=x^{2}-x$ and $g(x)=x+1$ find (fog) (x) and (gof) (x). Are they equal?
35. $f:[1, \infty) \rightarrow[2, \infty)$ is given by $f(x)=x+\frac{1}{x}$, find $f^{-1}(x)$.
36. $f: R \rightarrow R, g: R \rightarrow R$ given by $f(x)=[x], g(x)=|x|$ then find

$$
(f \circ g)\left(\frac{-2}{3}\right) \text { and }(g \circ f)\left(\frac{-2}{3}\right)
$$

ANSWERS

1. R_{1} : is universal relation.
R_{2} : is empty relation.
R_{3} : is neither universal nor empty.
2. No, R is not reflexive.
3. $(5,7) \notin R$
4. $g \circ f=\{(1,3),(3,1)\}$
5. $(f o g)(x)=x \forall x \in R$
6. $f^{-1}(x)=\frac{5 x+1}{2}$
7. $(f \circ f)(x)=\frac{x}{2 x+1}, x \neq-\frac{1}{2}$
8. (i) $3 * 2=11$
(ii) $\frac{1369}{27}$
9. 6
10. 3
11. Yes, f is one-one $\because \forall x_{1}, x_{2} \in N \Rightarrow x_{1}^{2}=x_{2}^{2}$.
12. $A=[1, \infty)$ because $R_{f}=[1, \infty)$
13. $n(B)=10$
14. 120.
1. No, R is not reflexive $\because(a, a) \notin R \forall a \in N$
2. f is not one-one functions
$\because f(3)=f(-1)=2$
$3 \neq-1$ i.e. distinct element has same images.
3. $B=[-1,1]$
4. $e=5$
5. Identity element does not exist.
6. (a) Bijective
(b) Neither one-one nor onto.
(c) One-one, but not onto.
(d) Neither one-one nor onto.
7.

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

24. Elements related to 4 are $0,4,8$.
25. $f^{-1}(x)=\frac{7 x+4}{5 x-3}$
26. 0 is the identity element.
27. Neither commutative nor associative.
28. (i) Commutative and associative.
(ii) $(1,1)$ is identity in $N \times N$
29. $\quad 0$ is the identity element.
30. $(f \circ g)(x)=x^{2}+x$
$(g \circ f)(x)=x^{2}-x+1$
Clearly, they are unequal.
31. $f^{-1}(x)=\frac{x+\sqrt{x^{2}-4}}{2}$
32. $(f \circ g)\left(\frac{-2}{3}\right)=0$

$$
(g \circ f)\left(\frac{-2}{3}\right)=1
$$

