CHAPTER 1

RELATIONS AND FUNCTIONS

IMPORTANT POINTS TO REMEMBER

- Relation *R* from a set *A* to a set *B* is subset of $A \times B$.
- $A \times B = \{(a, b) : a \in A, b \in B\}.$
- If n(A) = r, n (B) = s from set A to set B then n (A × B) = rs.
 and no. of relations = 2^{rs}
- ϕ is also a relation defined on set A, called the void (empty) relation.
- $R = A \times A$ is called universal relation.
- Reflexive Relation : Relation R defined on set A is said to be reflexive iff (a, a) ∈ R ∀ a ∈ A
- Symmetric Relation : Relation R defined on set A is said to be symmetric iff (a, b) ∈ R ⇒ (b, a) ∈ R ∀ a, b, ∈ A
- **Transitive Relation** : Relation *R* defined on set *A* is said to be transitive if $(a, b) \in R$, $(b, c) \in R \Rightarrow (a, c) \in R \forall a, b, c \in R$
- Equivalence Relation : A relation defined on set A is said to be equivalence relation iff it is reflexive, symmetric and transitive.
- One-One Function : $f : A \to B$ is said to be one-one if distinct elements in A has distinct images in B. *i.e.* $\forall x_1, x_2 \in A \text{ s.t. } x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$

OR

$$\forall x_1, x_2 \in A \text{ s.t. } f(x_1) = f(x_2)$$
$$\Rightarrow x_1 = x_2$$

One-one function is also called injective function.

9

XII - Maths

- Onto function (surjective) : A function $f : A \rightarrow B$ is said to be onto iff $R_f = B \ i.e. \ \forall \ b \in B$, there exist $a \in A$ s.t. f(a) = b
- A function which is not one-one is called many-one function.
- A function which is not onto is called into.
- **Bijective Function :** A function which is both injective and surjective is called bijective.
- Composition of Two Function : If f : A → B, g : B → C are two functions, then composition of f and g denoted by gof is a function from A to C given by, (gof) (x) = g (f (x)) ∀ x ∈ A

Clearly *g*of is defined if Range of $f \subset$ domain of *g*. Similarly *fog* can be defined.

• Invertible Function : A function $f: X \to Y$ is invertible iff it is bijective.

If $f: X \to Y$ is bijective function, then function $g: Y \to X$ is said to be inverse of *f* iff $fog = I_y$ and $gof = I_x$

when I_x , I_y are identity functions.

- g is inverse of f and is denoted by f^{-1} .
- Binary Operation : A binary operation ^(*) defined on set A is a function from A × A → A. * (a, b) is denoted by a * b.
- Binary operation * defined on set A is said to be commutative iff

 $a * b = b * a \forall a, b \in A.$

- Binary operation * defined on set A is called associative iff a * (b * c)
 = (a * b) * c ∀ a, b, c ∈ A
- If * is Binary operation on A, then an element e ∈ A is said to be the identity element iff a * e = e * a ∀ a ∈ A
- Identity element is unique.
- If * is Binary operation on set A, then an element b is said to be inverse of a ∈ A iff a * b = b * a = e
- Inverse of an element, if it exists, is unique.

XII - Maths

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. If A is the set of students of a school then write, which of following relations are. (Universal, Empty or neither of the two).

 $R_1 = \{(a, b) : a, b \text{ are ages of students and } |a - b| \ge 0\}$

 $R_2 = \{(a, b) : a, b \text{ are weights of students, and } |a - b| < 0\}$

 $R_3 = \{(a, b) : a, b \text{ are students studying in same class}\}$

- 2. Is the relation *R* in the set $A = \{1, 2, 3, 4, 5\}$ defined as $R = \{(a, b) : b = a + 1\}$ reflexive?
- 3. If *R*, is a relation in set *N* given by

$$R = \{(a, b) : a = b - 3, b > 5\},\$$

then does elements (5, 7) \in R?

- 4. If $f : \{1, 3\} \rightarrow \{1, 2, 5\}$ and $g : \{1, 2, 5\} \rightarrow \{1, 2, 3, 4\}$ be given by $f = \{(1, 2), (3, 5)\}, g = \{(1, 3), (2, 3), (5, 1)\}$ Write down gof.
- 5. Let $g, f : R \to R$ be defined by

$$g(x) = \frac{x+2}{3}, f(x) = 3x - 2$$
. Write fog.

6. If $f: R \to R$ defined by

$$f(x)=\frac{2x-1}{5}$$

be an invertible function, write $f^{-1}(x)$.

- 7. If $f(x) = \frac{x}{x+1} \forall x \neq -1$, Write for f(x).
- 8. Let * is a Binary operation defined on R, then if
 - (i) a * b = a + b + ab, write 3 * 2

XII - Maths

(ii)
$$a^*b = \frac{(a+b)^2}{3}$$
, Write $(2^*3)^*4$.

- 9. If *n*(*A*) = *n*(*B*) = 3, Then how many bijective functions from *A* to *B* can be formed?
- 10. If f(x) = x + 1, g(x) = x 1, Then (gof) (3) = ?
- 11. Is $f: N \to N$ given by $f(x) = x^2$ is one-one? Give reason.
- 12. If $f : R \to A$, given by

 $f(x) = x^2 - 2x + 2$ is onto function, find set A.

- 13. If $f: A \to B$ is bijective function such that n(A) = 10, then n(B) = ?
- 14. If n(A) = 5, then write the number of one-one functions from A to A.
- 15. $R = \{(a, b) : a, b \in N, a \neq b \text{ and } a \text{ divides } b\}$. Is R reflexive? Give reason?
- 16. Is $f : R \to R$, given by f(x) = |x 1| is one-one? Give reason?
- 17. $f: R \to B$ given by $f(x) = \sin x$ is onto function, then write set B.

18. If
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$
, show that $f\left(\frac{2x}{1+x^2}\right) = 2f(x)$.

- 19. If '*' is a binary operation on set *Q* of rational numbers given by $a * b = \frac{ab}{5}$ then write the identity element in *Q*.
- 20. If * is Binary operation on N defined by $a * b = a + ab \forall a, b \in N$. Write the identity element in N if it exists.

SHORT ANSWER TYPE QUESTIONS (4 Marks)

21. Check the following functions for one-one and onto.

(a)
$$f: R \to R$$
, $f(x) = \frac{2x-3}{7}$

(b)
$$f: R \rightarrow R, f(x) = |x + 1|$$

(c)
$$f: R - \{2\} \to R, f(x) = \frac{3x-1}{x-2}$$

XII – Maths

(d) $f: R \to [-1, 1], f(x) = \sin^2 x$

- 22. Consider the binary operation * on the set {1, 2, 3, 4, 5} defined by $a^* b = H.C.F.$ of *a* and *b*. Write the operation table for the operation *.
- 23. Let $f: R \left\{\frac{-4}{3}\right\} \to R \left\{\frac{4}{3}\right\}$ be a function given by $f(x) = \frac{4x}{3x+4}$. Show that *f* is invertible with $f^{-1}(x) = \frac{4x}{4-3x}$.
- 24. Let *R* be the relation on set $A = \{x : x \in Z, 0 \le x \le 10\}$ given by $R = \{(a, b) : (a b) \text{ is multiple of } 4\}$, is an equivalence relation. Also, write all elements related to 4.
- 25. Show that function $f : A \to B$ defined as $f(x) = \frac{3x+4}{5x-7}$ where $A = R \left\{\frac{7}{5}\right\}, B = R \left\{\frac{3}{5}\right\}$ is invertible and hence find f^{-1} .
- 26. Let * be a binary operation on Q. Such that a * b = a + b ab.
 - (i) Prove that * is commutative and associative.
 - (ii) Find identify element of * in Q (if it exists).
- 27. If * is a binary operation defined on $R \{0\}$ defined by $a * b = \frac{2a}{b^2}$, then check * for commutativity and associativity.
- 28. If $A = N \times N$ and binary operation * is defined on A as

(a, b) * (c, d) = (ac, bd).

- (i) Check * for commutativity and associativity.
- (ii) Find the identity element for * in A (If it exists).
- 29. Show that the relation *R* defined by $(a, b) R(c, d) \Leftrightarrow a + d = b + c$ on the set $N \times N$ is an equivalence relation.

30. Let * be a binary operation on set Q defined by $a * b = \frac{ab}{4}$, show that

(i) 4 is the identity element of * on Q.

XII – Maths

(ii) Every non zero element of Q is invertible with

$$a^{-1} = \frac{16}{a}, \quad a \in Q - \{0\}.$$

- 31. Show that $f: R_+ \to R_+$ defined by $f(x) = \frac{1}{2x}$ is bijective where R_+ is the set of all non-zero positive real numbers.
- 32. Consider $f : R_+ \rightarrow [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$ show that f is invertible with $f^{-1} = \frac{\sqrt{x+6}-1}{3}$.
- 33. If '*' is a binary operation on *R* defined by a * b = a + b + ab. Prove that * is commutative and associative. Find the identify element. Also show that every element of *R* is invertible except -1.
- 34. If f, g : $R \to R$ defined by $f(x) = x^2 x$ and g(x) = x + 1 find (fog) (x) and (gof) (x). Are they equal?

35.
$$f:[1,\infty) \to [2,\infty)$$
 is given by $f(x) = x + \frac{1}{x}$, find $f^{-1}(x)$.

36. $f: R \to R, g: R \to R$ given by f(x) = [x], g(x) = |x| then find

$$(fog)\left(\frac{-2}{3}\right)$$
 and $(gof)\left(\frac{-2}{3}\right)$.

ANSWERS

1. R_1 : is universal relation.

 R_2 : is empty relation.

 R_3 : is neither universal nor empty.

- 2. No, R is not reflexive.
- 3. (5, 7) ∉ *R*
- 4. $gof = \{(1, 3), (3, 1)\}$
- 5. $(fog)(x) = x \forall x \in R$

XII – Maths

6. $f^{-1}(x) = \frac{5x+1}{2}$ 7. $(fof)(x) = \frac{x}{2x+1}, x \neq -\frac{1}{2}$ (i) 3 * 2 = 11 8. 1369 (ii) 27 9. 6 10. 3 Yes, *f* is one-one $\because \forall x_1, x_2 \in N \Rightarrow x_1^2 = x_2^2$. 11. $A = [1, \infty)$ because $R_f = [1, \infty)$ 12. n(B) = 1013. 14. 120. No, *R* is not reflexive $\because (a, a) \notin R \forall a \in N$ 15. 16. f is not one-one functions \therefore f(3) = f (-1) = 2 $3 \neq -1$ *i.e.* distinct element has same images. 17. B = [-1, 1]19. *e* = 5 20. Identity element does not exist. 21. (a) Bijective (b) Neither one-one nor onto. One-one, but not onto. (c) (d) Neither one-one nor onto.

XII - Maths

22.

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

24. Elements related to 4 are 0, 4, 8.

25.
$$f^{-1}(x) = \frac{7x+4}{5x-3}$$

26. 0 is the identity element.

27. Neither commutative nor associative.

- 28. (i) Commutative and associative.
 - (ii) (1, 1) is identity in $N \times N$

33. 0 is the identity element.

34. (fog) $(x) = x^2 + x$

(gof)
$$(x) = x^2 - x + 1$$

Clearly, they are unequal.

35.
$$f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2}$$

$$36. \quad (fog)\left(\frac{-2}{3}\right) = 0$$

$$(gof)\left(\frac{-2}{3}\right) = 1$$

XII - Maths

16