TOPIC 1 RELATIONS & FUNCTIONS <u>SCHEMATIC DIAGRAM</u>

Topic	Concepts	Degree of	References
		importance	NCERT Text Book XII Ed. 2007
Relations &	(i).Domain, Co domain &	*	(Previous Knowledge)
Functions	Range of a relation		
	(ii).Types of relations	***	Ex 1.1 Q.No- 5,9,12
	(iii).One-one , onto & inverse	***	Ex 1.2 Q.No- 7,9
	of a function		
	(iv).Composition of function	*	Ex 1.3 QNo- 7,9,13
	(v).Binary Operations	***	Example 45
			Ex 1.4 QNo- 5,11

SOME IMPORTANT RESULTS/CONCEPTS

** A relation R in a set A is called

(i) *reflexive*, if $(a, a) \in \mathbb{R}$, for every $a \in \mathbb{A}$,

(ii) *symmetric*, if $(a_1, a_2) \in \mathbb{R}$ implies that $(a_2, a_1) \in \mathbb{R}$, for all $a_1, a_2 \in \mathbb{A}$.

(iii)*transitive*, if $(a_1, a_2) \in \mathbb{R}$ and $(a_2, a_3) \in \mathbb{R}$ implies that $(a_1, a_3) \in \mathbb{R}$, for all $a_1, a_2, a_3 \in \mathbb{A}$.

** Equivalence Relation : R is equivalence if it is reflexive, symmetric and transitive.

** Function : A relation $f : A \rightarrow B$ is said to be a function if every element of A is correlated to unique element in B.

* A is domain

* B is codomain

* For any *x* element $x \in A$, function *f* correlates it to an element in B, which is denoted by f(x) and is called image of *x* under *f*. Again if y = f(x), then *x* is called as pre-image of *y*.

* Range = { $f(x) | x \in A$ }. Range \subseteq Codomain

* The largest possible domain of a function is called domain of definition.

****Composite function** :

Let two functions be defined as $f: A \to B$ and $g: B \to C$. Then we can define a function

 ϕ : A \rightarrow C by setting ϕ (x) = g{f(x)} where $x \in A$, f (x) \in B, g{f(x)} \in C. This function

 ϕ : A \rightarrow C is called the composite function of *f* and *g* in that order and we write. $\phi = g_0 f$.

**** Different type of functions** : Let $f : A \rightarrow B$ be a function.

f* is **one to one (injective) mapping, if any two different elements in A is always correlated to different elements in B, i.e. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ or, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

* *f* is many one mapping, if \exists at least two elements in A such that their images are same.

* *f* is **onto mapping** (subjective), if each element in B is having at least one preimage.

f* is **into mapping if range \subseteq codomain.

* *f* is **bijective mapping** if it is both *one to one and onto*.

**** Binary operation :** A binary operation * on a set A is a function * : $A \times A \rightarrow A$. We denote *(a, b) by a *b.

* A binary operation '*' on A is a rule that associates with every ordered pair (a, b) of A x A a unique element a *b.

* An operation '*' on a is said to be commutative iff a * b = b * a \forall a, b \in A.

* An operation '*' on a is said to be associative iff $(a * b) * c = a * (b * c) \forall a, b, c \in A$.

* Given a binary operation * : $A \times A \rightarrow A$, an element $e \in A$, if it exists, is called *identity* for the operation *, if a * e = a = e * a, $\forall a \in A$.

* Given a binary operation $* : A \times A \rightarrow A$ with the identity element *e* in A, an element $a \in A$ is said to be *invertible* with respect to the operation*, if there exists an element *b* in A such that a * b = e = b * a and *b* is called the *inverse of a* and is denoted by a^{-1} .

ASSIGNMENTS

(i) Domain, Co domain & Range of a relation

LEVEL I

- 1. If A = $\{1,2,3,4,5\}$, write the relation a R b such that a + b = 8, a ,b \in A. Write the domain, range & co-domain.
- 2. Define a relation R on the set N of natural numbers by

 $R = \{(x, y) : y = x + 7, x \text{ is a natural number lesst han } 4 ; x, y \in \mathbb{N}\}.$

Write down the domain and the range.

2. Types of relations

LEVEL II

- 1. Let R be the relation in the set N given by $R = \{(a, b) | a = b 2, b > 6\}$ Whether the relation is reflexive or not ?justify your answer.
- 2. Show that the relation R in the set N given by $R = \{(a, b) | a \text{ is divisible by } b, a, b \in N\}$ is reflexive and transitive but not symmetric.
- 3. Let R be the relation in the set N given by $R = \{(a,b) | a > b\}$ Show that the relation is neither reflexive nor symmetric but transitive.
- 4. Let R be the relation on R defined as $(a, b) \in R$ iff $1+ab>0 \quad \forall a, b \in R$.
 - (a) Show that R is symmetric.
 - (b) Show that R is reflexive.
 - (c) Show that R is not transitive.
- 5. Check whether the relation R is reflexive, symmetric and transitive.

 $R = \{ (x, y) | x - 3y = 0 \}$ on $A = \{1, 2, 3, \dots, 13, 14 \}.$

10

LEVEL III

- 1. Show that the relation R on A, $A = \{ x | x \in \mathbb{Z}, 0 \le x \le 12 \}$, R = {(a,b): |a - b| is multiple of 3.} is an equivalence relation.
- $\mathbf{K} = \{(a, b), | a = b | \text{ is induciple of } 3.\}$ is an equivalence relation.
- 2.Let N be the set of all natural numbers & R be the relation on $N \times N$ defined by { (a, b) R (c, d) iff a + d = b + c}. Show that R is an equivalence relation.
- 3. Show that the relation R in the set A of all polygons as: $R = \{(P_1, P_2), P_1 \& P_2 \text{ have the same number of sides}\}$ is an equivalence relation. What is the set of all elements in A related to the right triangle T with sides 3,4 & 5 ?
- 4. Show that the relation R on A, $A = \{ x | x \in \mathbb{Z}, 0 \le x \le 12 \}$, R = {(a,b): |a - b| is multiple of 3.} is an equivalence relation.
- 5. Let N be the set of all natural numbers & R be the relation on $N \times N$ defined by { (a, b) R (c, d) iff a + d = b + c}. Show that R is an equivalence relation. [CBSE 2010]
- 6. Let A = Set of all triangles in a plane and R is defined by $R=\{(T_1,T_2): T_1,T_2 \in A \& T_1 \sim T_2 \}$ Show that the R is equivalence relation. Consider the right angled Δs , T_1 with size 3,4,5; T_2 with size 5,12,13; T_3 with side 6,8,10; Which of the pairs are related?

(iii)One-one, onto & inverse of a function LEVEL I

- 1. If $f(x) = x^2 x^{-2}$, then find f(1/x).
- 2 Show that the function f: $R \rightarrow R$ defined by $f(x)=x^2$ is neither one-one nor onto.
- 3 Show that the function f: $N \rightarrow N$ given by f(x)=2x is one-one but not onto.
- 4 Show that the signum function f: $\mathbf{R} \rightarrow \mathbf{R}$ given by: $f(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x} \neq 0 \\ 0, & \text{if } \mathbf{x} = 0 \\ -1, & \text{if } \mathbf{x} < 0 \end{cases}$

is neither one-one nor onto.

- 5 Let A = {-1,0,1} and B = {0,1}. State whether the function f : A \rightarrow B defined by f(x) = x² is bijective.
- 6. Let $f(x) = \frac{x-1}{x+1}$, $x \neq -1$, then find $f^{-1}(x)$

LEVEL II

1. Let A = $\{1,2,3\}$, B = $\{4,5,6,7\}$ and let f = $\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not. [CBSE2011]

2. If $f: R \rightarrow R$ defined as $f(x) = \frac{2x-7}{4}$ is an invertible function. Find $f^{-1}(x)$.

- 3. Write the number of all one-one functions on the set $A = \{a, b, c\}$ to itself.
- 4. Show that function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = 7 2x^3$ for all $x \in \mathbb{R}$ is bijective.
- 5. If f: R \rightarrow R is defined by f(x)= $\frac{3x+5}{2}$. Find f⁻¹.

LEVEL III

1. Show that the function f: R \rightarrow R defined by $f(x) = \frac{2x-1}{3}$. $x \in R$ is one- one & onto function. Also

find the f^{-1} .

2. Consider a function $f: \mathbb{R}_+ \rightarrow [-5, \infty)$ defined $f(x) = 9x^2 + 6x - 5$. Show that f is invertible &

$$f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$$
, where $R_+ = (0,\infty)$.

3.Consider a function f: $R \rightarrow R$ given by f(x) = 4x + 3. Show that f is invertible & $f^{-1}: R \rightarrow R$ with $f^{-1}(y) = \frac{y-3}{4}$.

4. Show that f: $R \rightarrow R$ defined by $f(x) = x^3 + 4$ is one-one, onto. Show that $f^{-1}(x) = (x-4)^{1/3}$. 5. Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function $f : A \rightarrow B$ defined by

$$f(x) = \left(\frac{x-2}{x-3}\right)$$
. Show that f is one one onto and hence find f^{-1} . [CBSE2012]

6. Show that $f: N \to N$ defined by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$ is both one one onto.

[CBSE2012]

(iv) Composition of functions

LEVEL I

1. If
$$f(x) = e^{2x}$$
 and $g(x) = \log \sqrt{x}$, $x > 0$, find
(a) $(f + g)(x)$ (b) $(f \cdot g)(x)$ (c) fog (x) (d) g of (x) .
2. If $f(x) = \frac{x-1}{x+1}$, then show that (a) $f\left(\frac{1}{x}\right) = -f(x)$ (b) $f\left(-\frac{1}{x}\right) = \frac{-1}{f(x)}$
LEVEL II

1. Let f, g : $R \rightarrow R$ be defined by f(x)=|x| & g(x) = [x] where [x] denotes the greatest integer function. Find f o g (5/2) & g o f (- $\sqrt{2}$).

2. Let
$$f(x) = \frac{x-1}{x+1}$$
. Then find $f(f(x))$
 $3x + 4$

- 3. If $y = f(x) = \frac{5x+4}{5x-3}$, then find (fof)(x) i.e. f(y)
- 4. Let $f : \mathbf{R} \to \mathbf{R}$ be defined as f(x) = 10x + 7. Find the function $g : \mathbf{R} \to \mathbf{R}$ such that $g \circ f(x) = f \circ g(x) = I_{\mathbf{R}}$ [CBSE2011]

5. If
$$f: \mathbf{R} \to \mathbf{R}$$
 be defined as $f(x) = (3 - x^3)^{\frac{1}{3}}$, then find $f \circ f(x)$.

[CBSE2010]

6. Let $f: R \rightarrow R \& g: R \rightarrow R$ be defined as $f(x) = x^2$, g(x) = 2x - 3. Find fog(x).

(v)Binary Operations

LEVEL I

- 1. Let * be the binary operation on N given by a*b = LCM of a &b. Find 3*5.
- 2. Let *be the binary on N given by a*b = HCF of $\{a, b\}$, $a, b \in N$. Find 20*16.
- 3. Let * be a binary operation on the set Q of rational numbers defined as $a * b = \frac{ab}{5}$.

Write the identity of *, if any.

4. If a binary operation '*' on the set of integer Z, is defined by $a * b = a + 3b^2$ Then find the value of 2 * 4.

LEVEL 2

- Let A= N×N & * be the binary operation on A defined by (a ,b) * (c ,d) = (a+c, b+d)
 Show that * is (a) Commutative (b) Associative (c) Find identity for * on A, if any.
- Let A = Q×Q. Let * be a binary operation on A defined by (a,b)*(c,d)= (ac , ad+b).
 Find: (i) the identity element of A (ii) the invertible element of A.
- 3. Examine which of the following is a binary operation

(i)
$$a * b = \frac{a+b}{2}$$
; $a, b \in N$ (ii) $a*b = \frac{a+b}{2} a, b \in Q$

For binary operation check commutative & associative law.

LEVEL 3

1.Let $A = N \times N$ & * be a binary operation on A defined by $(a, b) \times (c, d) = (ac, bd)$

 \forall (a, b),(c, d) $\in N \times N$ (i) Find (2,3) * (4,1)

(ii) Find $[(2,3)^*(4,1)]^*(3,5)$ and $(2,3)^*[(4,1)^*(3,5)]$ & show they are equal

(iii) Show that * is commutative & associative on A.

2. Define a binary operation * on the set {0,1,2,3,4,5} as a * b = $\begin{cases} a+b, & \text{if } a+b < 6\\ a+b-6, & a+b \ge 6 \end{cases}$

Show that zero in the identity for this operation & each element of the set is invertible with 6 - a being the inverse of a. [CBSE2011]

3. Consider the binary operations $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $o: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as a *b = |a - b|and $a \circ b = a$, $\forall a, b \in \mathbb{R}$. Show that *is commutative but not associative, o is associative but not commutative. [CBSE2012]

Questions for self evaluation

1. Show that the relation R in the set A = $\{1, 2, 3, 4, 5\}$ given by R = $\{(a, b) : |a - b| \text{ is even}\}$, is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.

2. Show that each of the relation R in the set $A = \{x \in \mathbb{Z} : 0 \le x \le 12\}$, given by

 $R = \{(a, b) : |a - b| \text{ is a multiple of } 4\}$ is an equivalence relation. Find the set of all elements related to 1.

- **3**. Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2\}$, is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?
- **4**. If R_1 and R_2 are equivalence relations in a set A, show that $R_1 \cap R_2$ is also an equivalence relation.
- 5. Let A = **R** {3} and B = **R** {1}. Consider the function f : A \rightarrow B defined by f (x) = $\left(\frac{x-2}{x-3}\right)$.

Is f one-one and onto? Justify your answer.

- 6. Consider $f: \mathbb{R} \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible and find f^{-1} .
- 7. On $R \{1\}$ a binary operation '*' is defined as a * b = a + b ab. Prove that '*' is commutative and associative. Find the identity element for '*'. Also prove that every element of $R \{1\}$ is invertible.
- 8. If $A = Q \times Q$ and '*' be a binary operation defined by (a, b) * (c, d) = (ac, b + ad),

for (a, b), (c, d) \in A. Then with respect to '*' on A

- (i) examine whether '*' is commutative & associative
- (i) find the identity element in A,
- (ii) find the invertible elements of A.