CLASS - XII MATHEMATICS ASSIGNMENT NO. 2 TOPIC - relations and functions

Q1 Let n be a fixed positive integer. Define a relation R on Z as follows $(a, b) \in R \Leftrightarrow a-b$ is divisible by n. Show that R is an equivalence relation on z .
Q2. Let z be the set of integers show that the relation $R=[a, b): a, b \in \square z$ and $a+b$ is even $]$ is an equivalence relation on z.
Q3. Let S be a relation on the set R of real numbers defined by $S=\left[(a, b) \in \square R \times R: a^{2}+b^{2}=1\right\}$ prove that S is not an equivalence relation R.
Q4. Show that the relation R on the set R of real numbers defined as $R=\left[(a, b):: a<b^{2}\right]$ is neither reflexive nor symmetric nor transitive.
Q5. Show that the relation R on R defined as $R=[(a, b): a \leq]$ is reflexive and transitive but not symmetric.
Q6. Show that $f: R \rightarrow R$, defined as $f(x)=x^{3}$, is a bijection.
Q7. Show that the modulus function $f R \rightarrow R$, given by $f(x)=[x]$ is neither one-one nor on-to.
Q8. Show that the function of $F: R \rightarrow R$ given by $f(x)=x^{3}+x$ is a bijection.
Q9. Let $\mathrm{A}=\mathrm{R}-[2]$ and $\mathrm{B}=\mathrm{B}-[1]$. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a mapping defined by $\mathrm{f}(\mathrm{x}) \frac{x-1}{x-2}$, show that f is bijective.
Q10. Show that $f: R \rightarrow R$, given $f(x)=x-[x]$, is neither one-one or onto.
Q11. $\operatorname{Ret} f(x)=[x]$ and $g(x)=[x]$, Find
(gof) $\left[\frac{-5}{3}\right)$-(fog) $\left(\frac{-5}{3}\right)$ (ii) (gof $\left(\frac{5}{3}\right)-\left(\right.$ fog $\left(\frac{5}{3}\right)$ (iii) $(\mathrm{f}+2 \mathrm{~g})(-1)$

Q12. If $\mathrm{f}(\mathrm{x})=\frac{3 x-2}{2 x-3}$, prove that $\mathrm{f}\left(\mathrm{f}(\mathrm{x})=\mathrm{x}\right.$ for all $\mathrm{x} \square \mathrm{R}-\left(\frac{3}{2}\right)$
Q13. Find fog and gof, if (i) $f(x)=e^{x}, g(x)=\operatorname{loge} e^{x}$ (ii) $f(x)=x+1, g(x)=2 x+3$
Q14. Prove that the function $f: R \rightarrow R$ defined by $f(x)=2 x-3$ is invertible find f.
Q15. Let $F: N \rightarrow R$ be a function defined as $f\left(x 0=4 x^{2}+12 x+15\right.$. Show that $f: N \rightarrow$ Range (f) is invertible. Find the inverse of f.

Q16. Show that $\mathrm{f}:[-1,1] \rightarrow \mathrm{R}$, given by $\mathrm{f}(\mathrm{x})=\frac{x}{x+2}$ is one-one, find the inverse of the function $\mathrm{f}:(-1,1)$ \rightarrow Range (f).
Q17. Let ' x ' be a binary operation on set $2-$ [1] defined by $\mathrm{axb}=\mathrm{a}+\mathrm{b}-\mathrm{ab} ; \mathrm{a}, \mathrm{b},-\mathrm{Q}-[1]$. Find the identity element with respect to on Q . Also, prove that every element of $\mathrm{Q}-[1]$ is invertible.
Q18. Consider the binary operation $\square \square$ on the set $3=\{1,2,3,4,5\}$ defined by $\mathrm{A} \square \square \mathrm{B}=$ Minimum of a and B .
Write the composition table of a and b.

