Downloaded from www.studiestoday.com

StudiesToday

Class 12 ${ }^{\text {th }}$
 Relations \& Functions

Q.1) Let A and B are any two-empty sets. Show that $f: A \times B \rightarrow B \times A$ such that $\mathrm{f}(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{a})$ is a bijective function.

Sol.1) (Rough diagram)

One-One function
let (a, b) and $(c, d) \in A \times B$ (domain)
and $f(a, b=f(c, d)$
$\Rightarrow(b, a)=(d, c)$
$\Rightarrow b=d$ and $a=c$
$\Rightarrow(a, b)=(c, d)$
$\therefore f$ is one-one function
On-To
(.) since $n(A \times B)=n(B \times A)$
(.) f is one-one (just proved above)
(.) ? Range = co-domain
\therefore f must be on o
$\therefore \mathrm{f}$ is a bijective function
ans.
Q.2) Show that $f: N \rightarrow N$ given by
$f(x)=\{x+1$; if x is odd $\}$
$=\{x-1$; if x is even $\}$
f is a bijective function.
Sol.2) (Rough diagram)

One-One function :-
(.) Case 1: let x_{1}, and x_{2} on both odd
$x_{1}, x_{2} \in N$ (domain)
and $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad x_{1}+1=x_{2}+1$
$\Rightarrow \quad x_{1}=x_{2}$
(.) Case 2: let x_{1}, and x_{2} both even
$x_{1}, x_{2} \in N$ (domain)

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday om

$$
\begin{array}{ll}
& \text { and } f\left(x_{1}\right)=f\left(x_{2}\right) \\
\Rightarrow & x_{1}-1=x_{2}-1 \\
\Rightarrow & x_{1}=x_{2}
\end{array}
$$

(.) Case 3: let x_{1} is odd and x_{2} is even
and $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad x_{1}+1=x_{2}-1$
$\Rightarrow \quad x_{2}-x_{1}=2 \quad$ \{not possible \because even no - odd no $\left.\neq 2\right\}$
\therefore thus case is rejected
(.) Case 4 : let x_{1} is even and x_{2} is odd

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
\Rightarrow & x_{1}-1=x_{2}+1 \\
\Rightarrow & x_{1}-x_{2}=2 \quad(\text { not possible } \because \text { even no }- \text { odd no } \neq 2)
\end{aligned}
$$

\therefore thus case is also rejected
Hence, overall f is one-one function
On-To:
For every odd number $(2 n-1) \in N$ (co-domain) there exists an even number $(2 n)$ in domain (N) and for every even number $(2 p) \in N$ (co-domain) there exists an odd number
(2p-1) $\in N$ (domain)
\Rightarrow co-domain $=$ Range
$\therefore f$ is on-to
$\therefore f$ is bijective function
Q.2) Given examples of two functions $f: N \rightarrow Z$ and $g: Z \rightarrow Z$ such that gof is injective but g is not injective.
Sol.2) Given: $f: N \rightarrow Z$
and $g: Z \rightarrow Z$
then domain of 'gof ' is same as domain of ' f ' and co-domain of 'gof ' is as same as co-domain of ' g '
\therefore gof: $\mathrm{N} \rightarrow \mathrm{Z}$
let $f(x)=x$ and $g(x)=|x|$
$g o f=g(f(x))$
$=g(x)$
$g o f=|x|$
one-one (for gof)
let $x_{1}, x_{2} \in N$ (domain of gof)
and $(g 0 f)(x 1)=(g o f)\left(x_{2}\right)$
$\Rightarrow \quad g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$
$\Rightarrow \quad\left|x_{1}\right|=\left|x_{2}\right|$
$\Rightarrow \quad x_{1}= \pm x_{2}$
but $x_{1} \neq x_{2} \quad \ldots . .\left\{. . x_{1}, x_{2} \in N\right\}$
$\therefore x_{1}=x_{2}$
\therefore gof is one-one function
Now $g(-1)=|-1|=1$
$g(1)=|-1|=1$
since two different elements in domain (z) of g has same image in co-domain (z)
$\therefore \mathrm{g}$ is not one-one
Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

$\therefore f(x)=x$ and $g(x)=|x| \quad$ ans.
Q.3)
(i) $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$. Find $\operatorname{fOf}(\mathrm{x})$

Sol.3)
clearly $f o g \neq g o f \quad$ ans.
e.g when $x=-1$
fog $=|5(-1)-2|=|-5-2|=|-7|=7$
$g o f=|5|-1|-2|=|5-2|=3$
(iii) If $f(x)=2 x ; g(y)=3 y+4$ and $h(z)=\sin Z$

Show that ho(gof) $=($ hog $)$ of
LHS $=h o(g \circ f)$
$=h o[g(f(x))]$
$=h o[g(2 x)]$
$=h o[3(2 x)+4]$
$=h o(6 x+4)$
$=\sin (6 x+4)$
RHS (hog)of
$=[h o g] o f$
$=[h(g(y))] o f$
$=[(3 y+4)] o f$
$=[\sin (3 y+4)] o f$
$=\sin (3 y+4) 0(2 x)$
$=\sin (3(2 x)+4)=\sin (6 x+4)$
\therefore LHS $=$ RHS
Q.4) Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $f(x)=10 \mathrm{x}+7$. Find function $\mathrm{g}(\mathrm{x})$ such that $\mathrm{fog}=\mathrm{gof}=\mathrm{I}_{\mathrm{R}}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

StudiesToday om

(where $I_{R}=x$ identity function : $R \rightarrow$ real no's)
Sol.4) We have $f(x)=10 x+7$
given $f o g=g o f=I_{R}$
\Rightarrow fog $=$ gof $=x \quad$ where $x \in R$
To find: $g(x)$:
Consider fog $=x$

$$
\begin{aligned}
& \Rightarrow \quad f(g(x))=x \\
& \Rightarrow \quad 10 g(x)+7=x \\
& \Rightarrow \quad g(x)=\frac{x-7}{10}
\end{aligned}
$$

Now gof $=g(f(x))$
$=g(10 x+7)$
$=\frac{10 x+7-7}{10}$
$=\frac{10 x}{10}=x=I_{R} \quad$ (verified)
$\ldots g(x)=\frac{x-7}{10} \quad$ ans.
Q.5) Let $\mathrm{f}=\mathrm{R} \rightarrow \mathrm{R}$ be the sign um function defined as
$f(x)=\{-1 ; x<0\}$
$\{0 ; x=0\}$
$\{1 ; x>0\}$
and $g(x)=[x]$ be the greatest integer function. Then does fog and gof coincide (equal) in $(0,1)$?
Sol.5) When $x \in(0,1)$
value of $g(x)=[x]$ can be o or $1 \quad \ldots . . .\{[0.1]=0\}\{[0.2]=0\}\{[1]=1\}$
value of $f(x)=1$
........ $\{\because$ when $x>0 f(x)=1\}$
Now $f o g=f(g(x))$

$$
\begin{aligned}
& =f([x]) \\
& =f(0 \text { or } 1) \\
& =0,1
\end{aligned}
$$

$$
\ldots \ldots\{\text { as } x \in[0,1][x] \text { can be } 0 \text { or } 1\}
$$

....\{when $x=0 ; f(x)=0$, when $x=1 ; f(x)=1\}$
Now gof $=g(f(x))$

$$
=g(1) \quad \ldots .\{\ldots x \in[0,1], \quad f(x)=1\}
$$

clearly fog does not coincide (equal) with gof when $x \in[0,1]$ ans.
Q.6) Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $\mathrm{g}=\{(1,3),(2,3),(5,1)\}$ write down gof.
Sol.6) Domain of gof is same as domain of f and co-domain of gof is same as co-domain of g
\therefore gof : $\{1,3,4\} \rightarrow\{1,3\}$
Now, given: $f(1)=2 \quad g(1)=3$
$f(3)=5 \quad g(2)=3$
$f(4)=1 \quad g(5)=1$
$\operatorname{gof}(1)=g(f(1))=g(2)=3$
$\operatorname{gof}(3)=g(f(3))=g(5)=1$
$\operatorname{gof}(4)=g(f(4))=g(1)=3$
$\therefore \operatorname{gof}=\{(1,3),(3,1),(4,3)\} \quad$ ans.
Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

Q.7) Let $A=\{1,2,3\}$ and $B=\{4,5,6,7\}$ and $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or on-to.

Sol.7) Given $f(1)=4 \quad f(2)=5 \quad f(3)=6$

Clearly f is one-one, as every element in domain (A) has a unique image in co-domain (B) Since $7 \in$ co-domain (B), but this is not the image of any element in domain (A)
$\therefore \mathrm{f}$ is not on-to ans.
Q.8) Consider the function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$. Show that f and g are one-one but $\mathrm{f}+\mathrm{g}$ is not one-one.

Sol.8) We know that for any two different elements x_{1} and $x_{2} \in\left[0, \frac{\pi}{2}\right]$

$$
\begin{aligned}
& \quad \sin x_{1} \neq \sin x_{2} \text { and } \cos x_{1} \neq \cos x_{2} \\
& f\left(x_{1}\right) \neq(f) x_{2} \text { and } g\left(x_{1}\right) \neq g\left(x_{2}\right) \\
& \text { for all } \mathrm{x}_{1}, \mathrm{x}_{2} \text { 回 }[0,7] \text { and } x_{1} \neq x_{2} \\
& \therefore \mathrm{f} \text { and } \mathrm{g} \text { are one-one } \\
& \text { Now } f+g=\sin x+\cos x \\
& (f+g)(0)=f(0)+g(0)=\sin (0)+\cos (0)=0+1=1 \\
& (f+g)\left(\frac{\pi}{2}\right)=f\left(\frac{\pi}{2}\right)+g\left(\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)+\cos \frac{\pi}{2}=1+0=1 \\
& \text { clearly }(f+g)(0)=(f+g)\left(\frac{\pi}{2}\right) \\
& \text { but } 0 \neq \frac{\pi}{2} \\
& \text { i.e two different elements in domain }\left[0, \frac{\pi}{2}\right] \text { has same image in co-domain (R) } \\
& \therefore f+g \text { is not one-one }
\end{aligned}
$$

Q.9) (i) If $A=\{1,2,3\}$ and $B=\{a, c, d, e\}$. Find number of one-one functions

(ii) Find the number of on-to function from A to A if $A=\{1,2,3 \ldots . . n\}$

Sol.9) (i) The element 1 in A can be attached / associated with any element of B in 4 ways element 2 in A can be attached / Associated in 3 ways and element 3 can be associated in 2 ways
\therefore total no. of one-one function $=4 \times 3 \times 2=24$ ans.
(ii) The element 1 in co-domain can be attached / Associated with any element of domain in $=\mathrm{n}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

StudiesToday

ways
element 2 can be associated in $=(n-1)$ ways
element 3 can be associated in $=(n-2)$ ways
element n can be associated $\mathrm{in}=1$ way
\therefore the total no of on-to function an $=n \times(n-1) \times(n-2) \times \ldots .1=n$!ans.
Q.10) a)

Which of the following graphs represent a function ?
Sol.10) (a) is a function
\because for each value of $x, f(x)$ attains a unique and different value.
(b) is not a function
since for same value of $x, f(x)$ has multiple values.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

