StudiesToday

Class $12^{\text {th }}$
 Relations \& Functions

Q.1) $\quad *: P(x) \times P(x) \rightarrow P(x)$ defined by $A * B=(A-B) \cup(B-A)$ for all $A, B \in P(x)$

Show that φ in the identity element and all the elements of $P(x)$ are invertible with $A^{-1}=A$.
Sol.1) We have,
$A * B=(A-B) \cup(B-A)$
(1) To show φ is the identity elements, we have to show
$A * \varphi=A$ and $\varphi * A=A$
consider, $A * \varphi$
consider, φ * A

$$
\begin{array}{ll}
=(A-\varphi) \cup(\varphi-A) & =(\varphi-A) \cup(A-\not \subset) \\
=A \cup \varphi & =\varphi \cup A \\
=A & =A
\end{array}
$$

clearly $\not \subset$ is the identity element
(2) $A * B=E$
$\Rightarrow(A-B) \cup(B-A)=\varphi$
this is possible only when $B=A$
since, $(A-A) \cup(A-A)=\varphi \cup \varphi=\varphi=E$
\therefore all element of $P(x)$ are invertible with $A=A$ i.e $B=A$ ans.
Q.2) Consider the binary operation ${ }^{*}: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined by $a * b=|a-b|$ and $a o b=a$
(.) Show that * is commutative but not Associative
(.) Show that o is associative but not commutative
(.) Show that $a *(b 0 c)=(a * b) 0(a * c)$
(.) Does 0 distributes over * ?

Sol.2) $a * b=|a-b|$ and a ob $b=a$
(.) consider $a * b=|a-b|$
commutative $a * b=|a-b|$

$$
\begin{aligned}
b * a & =|b-a| \\
& =|a-b| \\
& =a * b
\end{aligned}
$$

\therefore * is commutative on R
Associative $(a * b) * c=|a-b| * c$

$$
a *(b * c)=a *|b-c|
$$

$=|a-|b-c||$
$\neq(a * b) * c$
e.g $\quad(1 * 2) * 3=|1-2| * 3$
$=1 * 3$
$=|1-3|=2$
$1 *(2 * 3)=1 *|2-3|$
$=1 * 1$
$=|1-1|$
$=0$
clearly * is not Associate on R
(.) Consider $a o b=a$

Commutative: a o $b=a$

$$
\begin{aligned}
& b \text { o } a=b \\
& a \text { o } b \Rightarrow b \text { o } a
\end{aligned}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

StudiesToday

```
e.g. \(\quad 1\) o \(2=1\)
\[
2 \circ 1=2
\]
```

clearly o is not commutative on R
Associative :

$$
\begin{aligned}
& (a o b) o c=a \circ c=a \\
& a o(b o c)=a o b=a
\end{aligned}
$$

clearly $(a o b) o c=a o(b o c)$
$\therefore o$ is Associative on R
(.)To prove $a *(b \circ c)=(a * b) o(a * c)$

LHS $\quad a *(b o c)$
$=a * b$
$=|a-b|$
RHS $(a * b) o(a * c)$
$=|a-b| o|a-c|$
$=|a-b|$
clearly LHS = RHS
(.) o distributes over when, $a o(b * c)=(a \circ b) *(a \circ c)$
LHS $a o(b * c)$

$$
=a \text { o a o }|b-c|
$$

$$
=a
$$

RHS $(a \circ b)(a \circ c)$

$$
\begin{aligned}
& =a a \\
& =|a-a| \\
& =0
\end{aligned}
$$

clearly LHS \neq RHS
\therefore o does not distributes over
Q.3) Let * be a binary operation on set z (integers) defined by $a * b=2 a+b-3$. Find
(i) $(3 * 4) * 2$
(ii) $(2 * 3) * 4$

Sol.3) We have a * $b=2 a+b-3$

$$
\text { (i) } \begin{aligned}
& (3 * 4) * 2 \\
= & (6+4-3) * 2 \\
= & 7 * 2 \\
= & 14+2-3 \\
= & 13 \quad \text { ans. }
\end{aligned}
$$

(ii) $(2 * 3) * 4$
$=(4+3-3) * 4$
$=4$ * 4
$=8+4-3$
$=9$ ans.
Q.4) Let * be a binary operation on set A where $A=\{1,2,3,4\}$
(i) write the total number of binary operations
(ii) If $a * b=$ HCF of $a \& b$ construct the operation table.

Sol.4) $A=\{1,2,3,4\}$
(i) we know that no. of binary operation $=n^{n^{2}}$
here $x=4$
\therefore no. of binary operations $=4^{4^{2}}=4^{16} \quad$ ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

StudiesToday

(ii) $a * b=$ HCF of $a \& b$ operation table :

	b				
a	1	2	3	4	
	1	1	1	1	
	2	1	2	1	2
	3	1	1	3	1
	4	1	2	1	4

Q.5) Show that the number of binary operations on $\{1,2\}$ having 1 as identity element and having 2 as inverse of 2 is exactly one

Sol.5) (.) We know that a binary operation on set S is a function from $S \times S$ to S .
(.) so a binary operation on set s: $\{1,2\}$ is a function from $\{(1,1),(1,2),(2,1),(2,2)\}$ to $\{1,2\}$
(.) let * be the required binary operation
(.) If 1 is the identity element and 2 is the inverse of 2 , then

1 * $1=1$
$1 * 2=2 \quad a * e=a$ and $e * a=a$
$2 * 1=2 \quad$ here $e=1, a=1 \& 2$
and $2 * 2=1$
$a^{*} b=e$
here $a=2 ; b=2 \& e=1$
(2 is the inverse of 2 given)

Clearly * can be defined in a unique way
\therefore Hence no. of required binary operations is 1 ans.
Q.6) Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as
$a * b\{a+b \quad$ if $a+b<6\}$

$$
\{a+b-6 \text { if } a+b \geq 6\}
$$

show that zero is the identity for thus operation and each element $a \neq 0$ of the set is invertible with 6 $-a$ being the inverse of a.

Sol.6) Identity element :
Consider $\quad \mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}$

$$
\begin{array}{l|l}
a * e=a & e * a=a \\
a+e=a & e+a=a \\
e=0 \in A & e=0 \in A
\end{array}
$$

$\therefore 0$ is the identity element
Consider, $a * b=a+b-6$

$$
\begin{array}{c|l}
a * e=a \\
a+e-6=a & \begin{array}{l}
e * a=a \\
e+a-6=a
\end{array}
\end{array}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission
$e=6 \notin A \quad e=6 \notin A$
$\therefore 0$ is the identity element
ans.
Inverse
Consider $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}$
$a * b=e$
$a+b=0$
$b=-a \notin A$
Consider,
$a * b=a+b-6$
$a * b=e$
$a+b-6=0$
$b=6-a \in A ;(a \neq 0)$
$\therefore 6-a$ is the inverse of a. ans.
Q.7) Show that zero is the identity element for addition on R (real no's) and 1 is the identity element for multiplication on R but there is no identity element for subtraction on R and division on $R-\{0\}$.
Sol.7)
(i) * $: R \times R \rightarrow R$

$$
a * b=a+b
$$

$a+e=a$
$e * a=a$
$e=0 \in R$
$e=0 \in R$
$\therefore 0$ is the identity element for addition on R
(ii) * $: R \times R \rightarrow R$
$\mathrm{a}^{*} \mathrm{~b}=\mathrm{ab}$
$a * e=a \quad e * a=a$
$a e=a \quad$ e $a=a$
$e=1 \in R \quad e=1 \in R$
$\therefore 1$ is the identity element for multiplication on R
(iii) $*: R \times R \rightarrow R$

$$
a * b=a-b
$$

$$
\begin{array}{c|c}
a * e=a & e * a=a \\
a-e=a & e-a=a \\
-e=0 & e=2 a \\
e=0 \in R & \text { but } e \text { can not be in terms of a or variable }
\end{array}
$$

\therefore identity element does not exist
(iv) $*: R-\{0\} \times R-\{0\} \rightarrow R-\{0\}$

$$
\mathrm{a} * \mathrm{~b}=\frac{a}{b}
$$

$a * e=a$
$\frac{a}{e}=a$

$$
\frac{e}{a}=a
$$

$e=1 \in R-\{0\}$

$$
e * a=a
$$

$$
e=a^{2}
$$

but e cannot be a variable
\therefore identity element does not exist.
ans.

Topic: Functions

Q.8) Let $f: R \rightarrow\left\{\frac{-4}{3}\right\} \rightarrow R$ defined as $f(x)=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$.

Show that f is invertible and find its inverse.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

StudiesToday

Sol.8) We have

$$
\begin{equation*}
f: R-\left\{\frac{-4}{3}\right\} \rightarrow R \tag{1}
\end{equation*}
$$

and $f(x)=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$
ONE-ONE :-
let $x_{1}, x_{2} \in R-\left\{\frac{-4}{3}\right\}$ (domain)
and $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad \frac{4 x_{1}}{3 x_{1}+4}=\frac{4 x_{2}}{3 x_{2}+4}$
$\Rightarrow \quad 12 x_{1} x_{2}+16 x_{1}=12 x_{1} x_{2}+16 x_{2}$
$\Rightarrow 16 x_{1}=16 x_{2}$
$\Rightarrow \quad x_{1}=x_{2}$
$\therefore f$ is one-one function
ON-TO :-
let $y=f(x)$
$\Rightarrow y=\frac{4 x}{3 x+4}$
$\Rightarrow 3 x y+4 y=4 x$
$\Rightarrow x(3 y-4)-4 y$
$\Rightarrow \quad x=\frac{-4 y}{3 y-4}$
for eachyR (co-domain), there exists an element x in domain such that

$$
\begin{aligned}
& \quad f(x)=f\left(\frac{-4 y}{3 y-4}\right) \\
& \quad f(x)=\frac{4\left(\frac{-4 y}{3 y-4}\right)}{3\left(\frac{-4 y}{3 y-4}\right)+4} \quad \ldots \ldots \ldots . \text { \{from eq. (1)\} } \\
& =\frac{\frac{-16 y}{3 y-4}}{\frac{-12 y+12 y-16}{3 y-4}} \\
& =\frac{-16 \mathrm{y}}{-16}=y \\
& \therefore f(x)=y \\
& \therefore \quad \mathrm{f} \text { is on-to function } \\
& \therefore \\
& \therefore \text { f is bijective function } \\
& \therefore \mathrm{f} \text { is invertible function } \\
& \text { and } f^{-1}=\frac{-4 y}{3 y-4} \\
& \text { and } f^{-1}(x)=\frac{-4 x}{3 x-4} \quad \text { ans. }
\end{aligned}
$$

Q.9) Considerf: $R_{+} \rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$. Show that f is bijective.

Also find the inverse.
Sol.9) We have

$$
f: R_{+} \rightarrow[4, \infty]
$$

and $f(x)=x^{2}+4$

One-One:
let $x_{1}, x_{2} \in R_{+}$
and $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}^{2}+4=x_{2}^{2}+4$
$\Rightarrow x_{1}^{2}=x_{2}^{2}$
$\Rightarrow x_{1}= \pm x_{2}$
but $x_{1} \neq x_{2} \quad \ldots . .\left\{. . x_{1}, x_{2} \in R_{+}\right\}$
Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

$\Rightarrow x_{1}=x_{2}$
$\therefore \mathrm{f}$ is one-one function
ON-TO :
let $y=f(x)$
$\Rightarrow y=x^{2}+4$
$\Rightarrow x^{2}=y-4$
$\Rightarrow x=\sqrt{y-4}$
for each $y \in[4, \infty]$, there exists an element x in R_{+}such that
$f(x)=f(\sqrt{y-4})$
$=(\sqrt{y-4})^{2}+4$
$=y-4+4$
$f(x)=y$
$\therefore \mathrm{f}$ is on-to function
$\therefore \mathrm{f}$ is bijective
$\therefore \mathrm{f}$ is invertible
and $f^{-1}=\sqrt{y-4}$
and $f^{-1}(x)=\sqrt{x-4}$ ans.
Q.10) Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$, where S is the range of $f . f(x)=4 \mathrm{x}^{2}+12 \mathrm{x}+15$. Show f is invertible and find its inverse.

Sol.10) We have,
$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$
$f(x)=4 x^{2}+12 x+15$
One-One :-
let $x_{1}, x_{2} \in N$ (domain)
and $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow 4 x_{1}^{2}+12 x_{1}+15=4 x_{2}^{2}+12 x_{2}+15$
$\Rightarrow 4 x_{1}^{2}-4 x_{2}^{2}+12 x_{1}-12 x^{2}=0$
$\Rightarrow 4\left(x_{1}^{2}-x_{2}^{2}\right)+12\left(x_{1}-x_{2}\right)=0$
$\Rightarrow 4\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)+12\left(x_{1}-x_{2}\right)=0$
$\Rightarrow\left(x_{1}-x_{2}\right)\left[4 x_{1}+4 x_{2}+12\right]=0$
$\Rightarrow x_{1}-x_{2}=0$ and $4 x_{1}+4 x_{2}+12=0$
$\Rightarrow x_{1}=x_{2}$ but $4 x_{1}+4 x_{2}+12 \neq 0 \quad \ldots \ldots .\left\{. . x_{1}, x_{2} \in N\right\}$
$\therefore \mathrm{f}$ is one-one function
On-To

$$
\text { let } y=f(x)
$$

$\Rightarrow y=4 \mathrm{x}^{2}+12 \mathrm{x}+15$
$\Rightarrow 4 x^{2}+12 \mathrm{x}+(15-y)=0$ \{quadratic equation\}
here $a=4, b=12$ and $c=15-y$
by quadratic formula,

$$
\begin{aligned}
& x=\frac{-12 \pm \sqrt{144-4(4)(15-y)}}{8} \\
& x=\frac{-12 \pm \sqrt{144-240+16 y}}{8} \\
& x=\frac{-12 \pm \sqrt{16 \mathrm{y}-96}}{8} \\
& x=\frac{-12 \pm 4 \sqrt{y-6}}{8} \\
& x=\frac{-12 \pm \sqrt{144-4(4)(15-y)}}{8} \\
& x=\frac{-3 \pm \sqrt{y-6}}{2}
\end{aligned}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

$$
x=\frac{-3+\sqrt{y-6}}{2} \text { but } x \neq \frac{-3-\sqrt{y-6}}{2}
$$

for each $y \in S$ (co-domain), there exists
on element x in N (domain) such that

$$
\begin{aligned}
& \quad f(x)=f\left(\frac{-3+\sqrt{y-6}}{2}\right) \\
& =4\left[\frac{-3+\sqrt{y-6}}{2}\right]^{2}+12\left[\frac{-3+\sqrt{y-6}}{2}\right]+15 \\
& =4\left(\frac{9+y-6-6 \sqrt{y-6}}{4}\right)+6(-3+\sqrt{y-6})+15 \\
& =3+y-6 \sqrt{y-6}-18+6 \sqrt{6-y}+15 \\
& f(x)=y \\
& \therefore f \text { is on-to function } \\
& \therefore f \text { is bijective } \\
& \therefore f \text { is invertible } \\
& \text { and } f^{-1}=\frac{-3+\sqrt{y-6}}{2} \\
& \text { and } f^{-1}(x)=\frac{-3 \sqrt{x-6}}{2} \quad \quad \text { ans. }
\end{aligned}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

