Downloaded from www.studiestoday.com

StudiesToday

Class $12^{\text {th }}$

Relations \& Functions

Q.1)	Show that the relation R in set Z given by $R\{(a, b): 2$ divides $a-b\}$ is an Equivalence relation.
Sol.1)	We have, $R=\{(a, b): 2$ divide $a-b\}$ Symmetric : let $(a, b) \in R$ $\Rightarrow a-b$ is divisible by 2 $\Rightarrow a-b=2 \lambda \quad$...... $\{\lambda \in Z\}$ $\Rightarrow b-a=-2 \lambda$ which is also divisible by 2 $\Rightarrow(b, a) \in$ $\therefore \quad \mathrm{R}$ is Symmetric Reflexive: for each $a \in Z$ $\Rightarrow a-a=0$ which is divisible by 2 $\Rightarrow(a, a) \in R$ $\therefore \mathrm{R}$ is Reflexive Transitive : let $(a, b) \in R$ and $(b, c) \in R$ $\Rightarrow a-b=2 \lambda \text { and } b-c=2 k \quad \ldots . .\{\lambda, k \in Z\}$ Now, $a-c=(a-b)+(b-c)$ $\Rightarrow a-c=2 \lambda+2 k$ $\Rightarrow a-c=2(\lambda+k)$ which is also divisible by 2 $\Rightarrow(a, c) \in R$ $\therefore \quad R$ is transitive since R is Symmetric, Reflexive and transitive $\therefore R$ is an Equivalence relation ans.
Q.2)	Show that the relation R in the set $\mathrm{A}, A=\{x \in z: 0 \leq x \leq 12\}$ given by $R=\{(a, b):(a-b)$ is multiple of 4$\}$ is an equivalence relation. Find the set of all the elements in set A which are related to 1.
Sol. 2)	We have, $R=\{(a, b):\|a-b\|$ is multiple of 4$\}$ Symmetric : let $(a, b) \in R$ $\Rightarrow\|a-b\|$ is multiple of 4 $\Rightarrow\|a-b\|=4 \lambda \quad \ldots \ldots .(\lambda \in z)$ $\Rightarrow\|b-a\|=4 \lambda$ which is multiple by 4 $\Rightarrow(b, a) \in R$ $\therefore \mathrm{R}$ is Symmetric Reflexive: $\text { for each } a \in A$ we have, $\|a-a\|=0$ which is multiple of 4 $\Rightarrow(a, a) \in R$ $\therefore R$ is Reflexive Transitive :

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

	$\begin{aligned} & \text { let }(a, b) \in R \text { and }(b, c) \in R \\ & \Rightarrow\|a-b\|=4 \lambda \text { and }\|b-c\|=4 k \quad \ldots . .\{\lambda, k \in Z\} \\ & \Rightarrow(a-b)= \pm 4 \lambda \text { and }(b-c)=-4 k \\ & \text { Now, }(a-c)=(a-b)+(b-c) \\ & \Rightarrow(a-c)= \pm 4 \lambda \pm 4 k \\ & \Rightarrow(a-c)= \pm 4(\lambda+k) \\ & \Rightarrow\|a-c\|=\|\lambda+k\| \text { which is multiple of } 4 \\ & \Rightarrow(a, c) \in R \end{aligned}$ $\therefore R \text { is transitive }$ $\therefore R$ is an Equivalence relation The elements which related to 1 are 1,5, 9 \therefore required set is $\{1,5,9\} \quad$ ans.
Q.3)	Let R be a relation on the set " A " of ordered pairs defined by $(x, y) R(u, v)$ if and only if $x v=y u$. Show that R is an equivalence relation.
Sol.3)	Given : A \rightarrow set of ordered pairs $(x, y) R(u, v) \Rightarrow x v=y u$ Symmetric: $\text { let }(x, y) R(u, v)$ $\begin{aligned} & \Rightarrow x v=y u \\ & \Rightarrow v x=u y \\ & \Rightarrow u y=v x \Rightarrow(4, v) R(x, y) \end{aligned}$ (Rough work) $((u, v) R(x, y))$ $(u y=v x)$ $\therefore \quad \mathrm{R}$ is Symmetric Reflexive : $\begin{array}{l\|l} & \text { for each }(\mathrm{x}, \mathrm{y}) \in \mathrm{A} \\ \Rightarrow \quad x y=y x & \text { \{Rough work\} } \\ \Rightarrow(x, y) R(x, y) & \{(x, y) R(x y)\} \\ \therefore \quad \mathrm{R} \text { is Reflexive } & \{x y=y x\} \end{array}$ Transitive : $\begin{aligned} & \text { let }(x, y) R(u, v) \text { and }(u, v) R(a, b) \\ \Rightarrow & x v=y u \text { and } u b=v a \\ \Rightarrow & x v=y u \text { and } v=\frac{u b}{a} \quad \ldots . .\{\operatorname{Rough}(x, y) R(a, b), x b=y a\} \\ \Rightarrow & x\left(\frac{u b}{a}\right)=y u \\ \Rightarrow & x b=y a \\ \Rightarrow & (x, y) R(a, b) \end{aligned}$ $\therefore \quad \mathrm{R}$ is transitive since R is Symmetric, Reflexive as well as transitive $\therefore \mathrm{R}$ is an Equivalence relation ans.
Q.4)	If R_{1} and R_{2} are equivalence relations in set A , show that $R_{1} \cap R_{2}$ is also on equivalence relation.
Sol.4)	Given :- R_{1} and R_{2} are equivalence relations Symmetric:

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \quad \text { let }(a, b) \in R_{1} \cap R_{2} \\ & \Rightarrow(a, b) \in R_{1} \text { and }(a, b) \in R_{2} \\ & \Rightarrow(b, a) \in R_{1} \text { and }(b, a) \in R_{2} \quad \ldots . .\{\because R \text { and } R \text { are symmetric relations }\} \\ & \Rightarrow(b, a) \in R_{1} \cap R_{2} \\ & \therefore \quad R_{1} \cap R_{2} \text { is Symmetric } \\ & \text { Reflexive : } \\ & \text { for each } a \in A \\ & \text { we have, }(a, a) \in R_{1} \text { and }(a, a) \in R_{2} \ldots \ldots \ldots \ldots .\left\{R 1 \text { and } R_{2} \text { are reflexive }\right\} \\ & \Rightarrow(a, a) \in R_{1} \cap R_{2} \\ & \therefore \quad R_{1} \cap R_{2} \text { is Reflexive } \\ & \text { Transitive : } \\ & \text { let }(a, b) \in R_{1} \cap R_{2} \text { and }(b, c) R_{1} \cap R_{2} \\ & \Rightarrow(a, b) \in R_{1} \text { and }(a, b) \in R_{2} \text { and }(b, c) \in R_{1} \&(b, c) \in R_{2} \\ & \Rightarrow(a, b) \in R_{1} \text { and }(b, c) \in R_{1} \quad \mid(a, b) R \text { and }(b, c) \in R_{2} \\ & \Rightarrow(a, c) \in R \\ & \Rightarrow(a, c) \in R_{1} \cap R_{2} \quad \ldots(a, c) \in R_{2} \\ & \Rightarrow \quad\left(R_{1} \cap R_{2} \text { is transitive } \quad \& R_{2} \text { are transitive }\right\} \\ & \text { since } R_{1} \cap R_{2} \text { is Symmetric, Reflexive as well as transitive } \\ & \therefore R_{1} \cap R_{2} \text { is an Equivalence relation ans. } \end{aligned}$
Q.5)	R is a relation on set N given by $a R b \leftrightarrow b$ is divisible by $a ; a$. $b \in N$ check whether R is Symmetric , reflexive and transitive.
Sol.5)	We have, $a R b \leftrightarrow b$ is divisible by a Symmetric: $\begin{aligned} & 2 R 6 \Rightarrow 6 \text { is divisible by } 2 \quad \ldots \ldots\left\{\frac{6}{2}=3\right\} \\ & \text { but } 6 R 2 \Rightarrow 2 \text { is not div by } 6 \end{aligned}$ $\therefore \mathrm{R}$ is not symmetric Reflexive : for each $a \in N$ a is always divisible by a $\Rightarrow a R a$ $\therefore \mathrm{R}$ is Reflexive Transitive : let $a R b$ and $b R c$ $\Rightarrow b$ is divisible by a and c is div by b $\Rightarrow \quad b=a \lambda$ and $c=b k \quad \ldots .\{\lambda, k \in N\}$ $\Rightarrow c=(a \lambda) k$ $\ldots\{\ldots b=a \lambda\}$ $\Rightarrow \frac{c}{a}=\lambda k$ clearly c is div by a $\Rightarrow a R c$ $\therefore \mathrm{R}$ is transitive ans.
Q.6)	R be relation in $P(x)$, where x is a non-empty set, given by ARB if only if $A C B$, where A \& B are subsets in $P(x)$. Is R is an equivalence relation on $P(x)$? Justify

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

	your answer.
Sol.6)	Let ARB $\Rightarrow A \subset B$ then it is not necessary that B is a subset of A i.e. $B \not \subset A$ $\Rightarrow B R A$ $\therefore \mathrm{R}$ is not symmetric and hence R is not an equivalence relation $\text { eg. } x=\{1,2,3\}$ $P(x)=\{\{1\}\{2\}\{3\}\{1,2\}\{2,3\}\{1,3\}\{1,2,3\}\}$ clearly $\{2\} \subset\{1,2\}$ between $\{1,2\} \subset\{2\}$ $\therefore R$ is not symmetric ans.
Q.7)	Show that the relation R defined in the set A of all triangles as $R-\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right\}$ is equivalence relation. Consider three right angle triangles T_{1} with sides $3,4,5, T_{2}$ with sides $5,12,13$ and T_{3} with sides 6,8 , 10. Which triangles among T_{1}, T_{2} and T_{3} are related ?
Sol.7)	A \rightarrow set of are triangles $R=\left\{\left(T_{1}, T_{2}\right): T_{1} \sim T_{2}\right\}$ Symmetric: let $\left(T_{1}, T_{2}\right) \in R$ $\Rightarrow T_{1} \sim T_{2}$ $\Rightarrow T_{2} \sim T_{1}$ $\Rightarrow\left(T_{2}, T_{1}\right) \in R$ $\therefore \mathrm{R}$ is symmetric Reflexive : for each triangle $T \in A$ $(T, T) \in R$ since every triangle is similar to itself $\therefore \mathrm{R}$ is reflexive Transitive : $\begin{aligned} & \quad \text { let }\left(T_{1}, T_{2}\right) \in R \text { and }\left(T_{2} \sim T_{3}\right) \in R \\ & \Rightarrow T_{1} \sim T_{2} \text { and } T_{2} \sim T_{3} \\ & \Rightarrow T_{1} \sim T_{3} \\ & \left.\Rightarrow T_{1}, T_{3}\right) \in R \\ & \therefore R \text { is transitive } \end{aligned}$ and hence R is an equivalence relation $\begin{aligned} & T_{1}: 3,4,5 \\ & T_{2}: 5,12,13 \\ & T_{3}: 6,8,10 \end{aligned}$ clearly sides of triangles T_{1} and T_{3} are in equal proportion i.e $\frac{3}{6}=\frac{4}{8}=\frac{5}{10}$ $\therefore \mathrm{T}_{1} \sim \mathrm{~T}_{3}$ $\Rightarrow \mathrm{T}_{1}$ and T_{3} are related to each other ans.
Q.8)	Check whether the relation R in R (real no's) define by $R=(a, b): a \leq b^{3}$ is reflexive, symmetric or transitive.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

	StudiesToday .om
Sol.8)	Symmetric : $\begin{aligned} & (1,2) \in R \\ & \text { as1 } \leq 2^{3} \\ & \text { but }(2,1) \notin R \\ & \text { since2 } \ddagger 13 \end{aligned}$ $\therefore \mathrm{R}$ is not symmetric Reflexive : $\frac{1}{2} \in R$ $\operatorname{but}\left(\frac{1}{2}, \frac{1}{2}\right)^{2} \notin R$ $\text { as } \frac{1}{2} \neq\left(\frac{1}{2}\right)^{3}$ $\therefore R$ is not reflexive Transitive: $(9,4) \in R \operatorname{and}(4,2) \in R$ $\text { as } 9 \leq 4^{3} \text { and } 4 \leq 2^{3}$ $\operatorname{but}(9,2) \notin R$ $\text { since } 9 \not \leq 2^{3}$
Q.9)	Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is reflexive neither symmetric nor transitive.
Sol.9)	We have, $\begin{aligned} & A=\{1,2,3\} \\ & R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\} \\ & \text { since }(1,2) \in R \\ & \text { but }(2,1) \notin R \\ & \therefore R \text { is not Symmetric } \\ & (1,2) \in R \text { and }(2,3) \in R \\ & \text { but }(1,3) \notin R \end{aligned}$ $\therefore \mathrm{R}$ is not transitive for each $a \in A$ $(a, a) \in R$ i.e. $(1,1),(2,2),(3,3) \in R$ $\therefore R$ is reflexive ans.
Q.10)	Determine whether each of the following relations are reflexive, symmetric and transitive (i) Relation in set $\mathrm{A}=\{1,2,3, \ldots \ldots \ldots . .13,14\}$ defined by $R=(x, y): 3 \mathrm{x}-y=0$. (ii) Relation in N defined as $R=(x, y): y=x+5 ; x<4$. (iii) Relation in set A $=\{1,2,3,4,5,6\}$ defined as $R=(x, y)$: y is divisible by x. (iv) Relation in Z defined as $R=(x, y): x-y$ is an integer. (v) Relation in R (real nos) defined as $R=(a, b): a \leq b^{2}$.
Sol.10)	$\begin{aligned} & \text { (i) } R=\{(1,3),(2,6),(3,9),(4,12)\} \quad \ldots \ldots . .(y=3 \mathrm{x}) \\ & \text { clearly }(1,3) \in R \text { but }(3,1) \notin R \\ & \therefore \text { not symmetric } \\ & 1 \in A \text { but }(1,1) \notin R \\ & \therefore \text { not reflexive } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday
$(1,3) \in R$ and $(3,9) \in R$ but $(1,9) \notin R$
\therefore not transitive
(ii) $R=\{(1,6),(2,7),(3,8)\} \quad \ldots . .\{\ldots y=x+5$ and $x<4\}$

Do yourself
(iii) $R=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6)\} \ldots\{\ldots y$ is divisible by $x\}$
clearly for each $a \in A$
$(a, a) \in R$ i.e. $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6) \in R$
$\therefore \mathrm{R}$ is reflexive
$(1,2) \in R$
$\operatorname{but}(2,1) \notin R$
since 1 in not divisible by 2
$\therefore R$ is not transitive
for each (a, b) and $(b, c) \in R$
clearly $(a, c) \in R$
$\therefore \mathrm{R}$ is transitive
(iv) Symmetric let $(x, y) \in R$
$\Rightarrow x-y=\lambda \quad$..... where $\lambda \rightarrow$ integer
$\Rightarrow y-x=-\lambda$ which is also an integer
$\Rightarrow(y, x) \in R$
$\therefore \mathrm{R}$ is Symmetric
Reflexive and transitive (Do yourself)
(v) give same examples as in case of $a \leq b^{3}$

It is neither symmetric, nor reflexive, nor transitive.

