

Class 12th Relations & Functions

Q.1)	Show that the relation R in set Z given by $R\{(a, b): 2 \text{ divides } a - b\}$ is an Equivalence relation.
Sol.1)	We have, $R = \{(a, b) : 2 \text{ divide } a - b\}$ Symmetric : let $(a, b) \in R$ $\Rightarrow a - b \text{ is divisible by 2}$ $\Rightarrow a - b = 2\lambda \qquad \dots \{\lambda \in Z\}$ $\Rightarrow b - a = -2\lambda$ which is also divisible by 2 $\Rightarrow (b, a) \in$ \therefore R is Symmetric Beflexive :
	for each $a \in Z$ $\Rightarrow a - a = 0$ which is divisible by 2 $\Rightarrow (a, a) \in R$ \therefore R is Reflexive Transitive : let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b = 2\lambda$ and $b - c = 2k$ $\{\lambda, k \in Z\}$ Now, $a - c = (a - b) + (b - c)$ $\Rightarrow a - c = 2\lambda + 2k$ $\Rightarrow a - c = 2(\lambda + k)$ which is also divisible by 2 $\Rightarrow (a,c) \in R$ \therefore R is transitive since R is Symmetric, Reflexive and transitive \Rightarrow P is an Equivalence relation and transitive
Q.2)	Show that the relation R in the set A, $A = \{x \in z : 0 \le x \le 12\}$ given by $R = \{(a, b) : (a - b)$ is multiple of 4} is an equivalence relation. Find the set of all the elements in set A which are related to 1.
Sol.2)	We have , $R = \{(a, b) : a - b \text{ is multiple of } 4\}$ Symmetric : let $(a, b) \in R$ $\Rightarrow a - b \text{ is multiple of } 4$ $\Rightarrow a - b = 4\lambda \qquad \dots (\lambda \epsilon z)$ $\Rightarrow b - a = 4\lambda \qquad \text{which is multiple by } 4$ $\Rightarrow (b, a) \in R$ \therefore R is Symmetric Reflexive : for each $a \in A$ we have, $ a - a = 0$ which is multiple of 4 $\Rightarrow (a, a) \in R$ \therefore R is Reflexive Transitive :

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

	StudiesToday.com
	let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b = 4\lambda$ and $ b-c = 4k$ $\{\lambda, k \in Z\}$ $\Rightarrow (a-b) = \pm 4\lambda$ and $(b-c) = -4k$ Now, $(a-c) = (a-b) + (b-c)$ $\Rightarrow (a-c) = \pm 4\lambda \pm 4k$ $\Rightarrow (a-c) = \pm 4\lambda \pm 4k$ $\Rightarrow (a-c) = \pm 4(\lambda + k)$ $\Rightarrow a-c = \lambda + k $ which is multiple of 4 $\Rightarrow (a,c) \in R$ \therefore R is transitive \therefore R is an Equivalence relation The elements which related to 1 are 1, 5, 9 \therefore required set is $\{1, 5, 9\}$ ans.
Q.3)	Let R be a relation on the set "A" of ordered pairs defined by $(x, y) R(u, v)$ if and only if $xv = yu$. Show that R is an equivalence relation.
Sol.3)	Given : A \rightarrow set of ordered pairs $(x, y) R(u, v) \Rightarrow xv = yu$ Symmetric : let $(x, y) R(u, v)$ $\Rightarrow xv = yu$ (Rough work) $\Rightarrow vx = uy$ ($(u, v) R(x, y)$) $\Rightarrow uy = vx \Rightarrow (4, v) R(x, y)$ ($(uy = vx)$ \therefore R is Symmetric Reflexive : for each $(x, y) \in A$ $\Rightarrow xy = yx$ (Rough work} $\Rightarrow (x, y) R(x, y)$ ($(x, y) R(x, y)$) \therefore R is Reflexive $\{xy = yx\}$ Transitive : let $(x, y) R(u, v)$ and $(u, v) R(a, b)$ $\Rightarrow xv = yu$ and $v = \frac{ub}{a}$ {Rough $(x, y) R(a, b)$, $xb = ya$ } $\Rightarrow xb = ya$ $\Rightarrow (x, y) R(a, b)$ \therefore R is transitive since R is Symmetric, Reflexive as well as transitive \therefore R is an Equivalence relation ans.
Q.4)	If K_1 and K_2 are equivalence relations in set A, show that $K_1 \cap K_2$ is also on equivalence relation.
501.4)	Given :- κ_1 and κ_2 are equivalence relations Symmetric :

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

AL SE	Charles .	Teste	
	Studies	<u>10da</u>	y .com

	$\begin{aligned} & \text{et } (a,b) \in R_1 \cap R_2 \\ \Rightarrow (a,b) \in R_1 \text{ and } (a,b) \in R_2 \\ \Rightarrow (b,a) \in R_1 \text{ and } (b,a) \in R_2 \dots \{: \text{R and R are symmetric relations}\} \\ \Rightarrow (b,a) \in R_1 \cap R_2 \\ \therefore R_1 \cap R_2 \text{ is Symmetric} \\ \text{Reflexive :} \\ &\text{for each } a \in A \\ &\text{we have, } (a,a) \in R_1 \text{ and } (a,a) \in R_2 \dots \dots \dots \{: R1 \text{ and } R_2 \text{ are reflexive}\} \\ \Rightarrow (a,a) \in R_1 \cap R_2 \\ \therefore R_1 \cap R_2 \text{ is Reflexive} \\ \text{Transitive :} \\ &\text{let } (a,b) \in R_1 \text{ and } (a,b) \in R_2 \text{ and } (b,c) \in R_1 \& (b,c) \in R_2 \\ \Rightarrow (a,b) \in R_1 \text{ and } (a,b) \in R_2 \text{ and } (b,c) \in R_1 \& (b,c) \in R_2 \\ \Rightarrow (a,b) \in R_1 \text{ and } (b,c) \in R_1 (a,b) \text{ R and } (b,c) \in R_2 \\ \Rightarrow (a,c) \in R \qquad (a,c) \in R_2 \\ \dots \{: R_1 \cap R_2 \text{ is transitive} \\ \text{since } R_1 \cap R_2 \text{ is transitive} \\ \text{since } R_1 \cap R_2 \text{ is Symmetric, Reflexive as well as transitive} \\ \therefore R_1 \cap R_2 \text{ is an Equivalence relation } \text{ ans.} \end{aligned}$
Q.5)	<i>R</i> is a relation on set <i>N</i> given by $aRb \leftrightarrow b$ is divisible by $a; a, b \in N$ check whether R is Symmetric , reflexive and transitive.
Sol.5)	We have, $aRb \leftrightarrow b$ is divisible by a Symmetric : $2R6 \Rightarrow 6$ is divisible by 2 $\left\{\frac{6}{2} = 3\right\}$ but $6R2 \Rightarrow 2$ is not div by 6 $\left\{\frac{2}{6} = \frac{1}{2}\right\}$ \therefore R is not symmetric Reflexive : for each $a \in N$ a is always divisible by a $\Rightarrow aRa$ \therefore R is Reflexive Transitive : let aRb and bRc \Rightarrow b is divisible by a and c is div by b $\Rightarrow b = a\lambda$ and $c = bk$ $\{\lambda, k \in N\}$ $\Rightarrow c = (a\lambda)k$ $\{\ldots, b = a\lambda\}$ $\Rightarrow \frac{c}{a} = \lambda k$ clearly c is div by a $\Rightarrow aRc$ \therefore R is transitive ans.
Q.6)	R be relation in P(x) , where x is a non-empty set , given by ARB if only if ACB , where A & B are subsets in $P(x)$. Is R is an equivalence relation on $P(x)$? Justify

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

	your answer.
Sol.6)	Let ARB $\Rightarrow A \subset B$ then it is not necessary that B is a subset of A i.e. $B \not\subset A$ \Rightarrow B R A \therefore R is not symmetric and hence R is not an equivalence relation eg. $x = \{1,2,3\}$ $P(x) = \{\{1\}\{2\}\{3\}\{1,2\}\{2,3\}\{1,3\}\{1,2,3\}\}$ clearly $\{2\} \subset \{1,2\}$ between $\{1,2\} \subset \{2\}$ \therefore R is not symmetric ans.
Q.7)	Show that the relation R defined in the set A of all triangles as $R-{(T_1, T_2) : T_1 is similar to T_2}$ is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related ?
Sol.7)	A → set of are triangles $R = \{(T_1, T_2) : T_1 \sim T_2\}$ Symmetric : let $(T_1, T_2) \in R$ $\Rightarrow T_1 \sim T_2$ $\Rightarrow T_2 \sim T_1$ $\Rightarrow (T_2, T_1) \in R$ \therefore R is symmetric Reflexive : for each triangle $T \in A$ $(T, T) \in R$ since every triangle is similar to itself \therefore R is reflexive transitive : let $(T_1, T_2) \in R$ and $(T_2 \sim T_3) \in R$ $\Rightarrow T_1 \sim T_2$ and $T_2 \sim T_3$ $\Rightarrow T_1 = 0$ clearly sides of triangles T_1 and T_3 are in equal proportion i.e. $\frac{3}{6} = \frac{4}{8} = \frac{5}{10}$ $\therefore T_1 \sim T_3$ $\Rightarrow T_1$ and T_3 are related to each other ans.
Q.8)	Check whether the relation R in R (real no's) define by $R = (a, b)$: $a \le b^3$ is reflexive, symmetric or transitive.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

N	StudiesToday.com
Sol.8)	Symmetric : $(1,2) \in R$ $as1 \leq 2^3$ but $(2,1) \notin R$ $since2 \leq 13$ \therefore R is not symmetric Reflexive : $\frac{1}{2} \in R$ but $(\frac{1}{2}, \frac{1}{2}) \notin R$ $as \frac{1}{2} \leq (\frac{1}{2})^3$ \therefore R is not reflexive Transitive : $(9,4) \in R$ and $(4,2) \in R$ $as 9 \leq 4^3$ and $4 \leq 2^3$ but $(9,2) \notin R$ since $9 \leq 2^3$ \therefore R is not transitive ans.
Q.9)	Show that the relation R in the set $\{1,2,3\}$ given by R = $\{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive neither symmetric nor transitive.
Sol.9)	We have, $A = \{1,2,3\}$ $R = \{(1,1), (2,2), (3,3), (1,2), (2,3)\}$ since $(1,2) \in R$ but $(2,1) \notin R$ \therefore R is not Symmetric $(1,2) \in Rand(2,3) \in R$ but $(1,3) \notin R$ \therefore R is not transitive for each $a \in A$ $(a, a) \in R$ i.e. $(1,1), (2,2), (3,3) \in R$ \therefore R is reflexive ans.
Q.10)	Determine whether each of the following relations are reflexive, symmetric and transitive (i) Relation in set A = {1,2,3, 13,14} defined by $R = (x, y): 3x - y = 0$. (ii) Relation in N defined as $R = (x, y): y = x + 5; x < 4$. (iii) Relation in set A = {1,2,3,4,5,6} defined as $R = (x, y): y$ is divisible by x . (iv) Relation in Z defined as $R = (x, y): x - y$ is an integer. (v) Relation in R (real nos) defined as $R = (a, b): a \le b^2$.
Sol.10)	(i) $R = \{(1,3), (2,6), (3,9), (4,12)\}$ $(y = 3x)$ clearly $(1,3) \in R$ but $(3,1) \notin R$ \therefore not symmetric $1 \in A$ but $(1,1) \notin R$ \therefore not reflexive

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Studies Today.com $(1,3) \in R$ and $(3,9) \in R$ but $(1,9) \notin R$... not transitive (ii) $R = \{(1,6), (2,7), (3,8)\}$ $\{\dots y = x + 5 \text{ and } x < 4\}$ Do yourself $(iii) R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)\}... \{\dots y \text{ is divisible by } x\}$ clearly for each $a \in A$ $(a, a) \in R$ i.e. $(1,1), (2,2), (3,3), (4,4), (5,5), (6,6) \in R$... R is reflexive $(1,2) \in R$ $but(2,1) \notin R$ stoday.con since 1 in not divisible by 2 ... R is not transitive for each (a, b) and $(b, c) \in R$ clearly $(a,c) \in R$... R is transitive (iv) Symmetric let $(x, y) \in R$ \Rightarrow *x* - *y* = λ where $\lambda \rightarrow$ integer \Rightarrow y - x = $-\lambda$ which is also an integer $\Rightarrow (y, x) \in R$... R is Symmetric Reflexive and transitive (Do yourself) (v) give same examples as in case of $a \leq b^3$ It is neither symmetric, nor reflexive, nor transitive. NNNN.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission