Downloaded from www.studiestoday.com

Important one marker from Matrices and Determinants

Q.1. Find x and y if: $2\left[\begin{array}{cc}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$.
Q.2.Evaluate: $\left|\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right|$
Q.3. Find the cofactor of diagonal elements in the following

$$
\left|\begin{array}{ccc}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right| \text {, also find } \mathrm{a}_{23} . \mathrm{A}_{23}
$$

Q.4.For what value of x , is the following matrix singular?
$\left[\begin{array}{cc}3-2 x & x+1 \\ 2 & 4\end{array}\right]$
Q.5. A matrix A, of order $3 x 3$, has determinant 4. Find the value of $|3 A|$.
Q.6.Construct a 2×3 matrix $\mathrm{A}=\left[a_{i j}\right]$ whoseelementsaregivenby $a_{i j}=\frac{3+i}{2-j}$
Q.7.If $\left|\begin{array}{cc}x & x \\ 1 & x\end{array}\right|=\left|\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right|$, find the value of x .
Q.8.If matrix $A=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, find AA^{T}.
Q.9. Write the value of the determinant $\left|\begin{array}{ccc}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6 x & 9 x & 12 x\end{array}\right|$.
Q.10. If A is an invertible matrix of order 3 and $|A|=5$, then find $|\operatorname{adj} A|$.
Q.11.Find x for which $\left|\begin{array}{cc}x & 4 \\ 2 & 2 x\end{array}\right|=0$
Q.12. write the value of the determinant:
$\left|\begin{array}{ccc}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|$
Q.13. Evaluate: $2\left|\begin{array}{cc}7 & -2 \\ -10 & 5\end{array}\right|$

Downloaded from www.studiestoday.com

Q.14. If $\mathrm{A}=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$.find $A+A^{\prime}$.
Q.15.If A is a non-singular matrix of order 3 and $|\operatorname{adj} A|=|A|^{K}$, write the value of K.
Q.16. If $\mathrm{A}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then for what value of α is A an identity matrix?
Q.17. If $\left.\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right]=\left[\begin{array}{cc}7 & 11 \\ k & 23\end{array}\right]$, find the value of k.
Q.18.Write the adjoint of $\mathrm{A}=\left[\begin{array}{cc}2 & -1 \\ 4 & 3\end{array}\right]$
Q.19. A is a square matrix of order 3 and $|A|=7$. Write the value of \mid adj. $A \mid$ and $|3 A|$
Q. 20 If A and B are matrices of order 3×4 and 4×3 respt., find the order of matrix (AB) and (BA).
Q.21. If $\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ 2 & -3\end{array}\right]$,thenfind \mid adj. $A \mid$
Q.22. Write A^{-1} for $\mathrm{A}=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$.
Q.23. If a matrix has 5 elements, write all possible orders it can have.
Q.24.Write the value of $\mathrm{x}-\mathrm{y}+\mathrm{z}$ from the following equation:
$\left\lfloor\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right\rfloor=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$
Q.25.Simpilify $\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$

Downloaded from www.studiestoday.com

Q.26. If $A^{T}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 3 & 2 & 3\end{array}\right]$, find $\mathrm{A}^{\mathrm{T}}-\mathrm{B}^{\mathrm{T}}$.
Q.27.If $3 A-B=\left[\begin{array}{ll}5 & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 3 \\ 2 & 5\end{array}\right]$,find the value of matrix B.
Q.28. If matrix $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $A^{2}=k A$, then write the value of k.
Q.29. If A is a square matrix of order 3 such that $|\operatorname{adj} . A|=81$, find $|A|$
Q.30. If A and B are symmetric matrices of same order, under what condition can you say that AB is also symmetric?

