Downloaded from www.studiestoday.com

StudiesToday

	Class 12 Linear Differential Equation
	Class 12 ${ }^{\text {th }}$
Q.1)	Show that the general solution of the D.E. $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+x}=0$ is given by $x+y+1=A(x-x-y-2 x y)$ where A is the parameter.
Sol.1)	We have, $\frac{d y}{d x}=-\frac{y^{2}+y+1}{x^{2}+x+1}$ $\Rightarrow \frac{d y}{y^{2}+y+1}=\frac{-d x}{x^{2}+x+1}$ Interpreting both sides $\begin{aligned} & \int \frac{d y}{\left(y^{2}+y+1\right)}=-\int \frac{d x}{\left(x^{2}+x+1\right)} \\ & \Rightarrow \int \frac{1}{\left(y+\frac{1}{2}\right)^{2}-\frac{1}{4}+1} d y=-\int \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{1}{4}+1} d x \\ & \Rightarrow \int \frac{1}{\left(y+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d y=-\int \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x \\ & \Rightarrow \frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+c \\ & \Rightarrow \frac{2}{\sqrt{3}}\left(\tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)+\tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)=c\right. \\ & \Rightarrow \tan ^{-1}\left(\frac{\frac{2 y+1}{\sqrt{3}}+\frac{2 x+1}{\sqrt{3}}}{1\left(\frac{2 y+1}{\sqrt{3}}\right)\left(\frac{2 x+1}{\sqrt{3}}\right)}=\frac{\sqrt{3}}{2} c\right. \\ & \Rightarrow \tan ^{-1}\left(\frac{2 x+2 y+2}{\sqrt{3}}\right. \\ & \frac{(3-4 x y-2 y-2 x-1}{\sqrt{3}}=\frac{\sqrt{3}}{2} c \\ & \Rightarrow \frac{(2 x+2 y+2) \sqrt{3}}{2-4 x y-2 x-2 y}=\tan \left(\frac{\sqrt{3}}{2} c\right) \\ & \Rightarrow \frac{(x+y+1)}{1-2 x y-x-y}=\frac{1}{\sqrt{3}} \tan \left(\frac{\sqrt{3}}{2} c\right) \\ & \Rightarrow \frac{x+y+1}{1-2 x y-x-y}=A ; \text { where } A=\frac{1}{\sqrt{3}} \tan \left(\frac{\sqrt{3}}{2} c\right) \\ & \Rightarrow(x+y-1)=A(1-2 x y-x-y) \text { is the required solution ans. } \end{aligned}$
Q.2)	Find the particular solution of the D.E. $\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0 ; \text { given } x=0, y=1$
Sol.2)	We have, $\left(1+e^{2 x}\right) d y=-\left(1+y^{2}\right) e^{x} d x$ $\Rightarrow \frac{d y}{d x}=-\frac{1+y^{2} e^{x}}{1+e^{x} d x}$ Separating the variables \& interpreting both sides $\begin{aligned} & \Rightarrow \int \frac{d y}{1+y^{2}}=-\int \frac{e x}{1+e^{2 x}} d x \\ & \quad \text { Put } e^{x}=t \Rightarrow e^{x} d x=d t \\ & \Rightarrow \tan ^{-1} y=-\int \frac{d t}{1+t^{2}} \\ & \Rightarrow \tan ^{-1} y=-\tan ^{-1} t+c \\ & \Rightarrow \tan ^{-1}(y)+\tan ^{-1}\left(e^{x}\right)=c \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	Put $x=0 \& y=1$ $\begin{aligned} & \Rightarrow \frac{r}{4}+\tan ^{-1}(1)=c \Rightarrow c=\frac{r}{4}+\frac{r}{4}=\frac{r}{2} \\ & \therefore \tan ^{-1}(y)+\tan ^{-1}\left(e^{x}\right)=\frac{r}{2} \\ & \Rightarrow \tan ^{-1}\left(\frac{y+e^{x}}{1-y e^{x}}\right)=\frac{r}{2} \\ & \Rightarrow \frac{y+e^{x}}{1-y e^{x}}=\tan \left(\frac{r}{2}\right) \\ & \Rightarrow \frac{y+e^{x}}{1-y e^{x}}=\frac{1}{0} \quad \ldots \ldots .\left\{\tan \left(\frac{r}{2}\right)=\propto\right\} \\ & \Rightarrow 0=1-y e^{x} \\ & \Rightarrow y=\frac{1}{e^{x}} \text { is the required solution } \end{aligned}$ ans.
Q.3)	At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $(-4,-3)$. Find the equation of the curve given that it passes through $(-2,1)$.
Sol.3)	It is given that $x y$ is the point of contact of the curve and its tangent. Hence the slope $=y+3+4$. Let this be m_{1} but we know that slope of the tangent to the curve is $\frac{d y}{d x}$ Let this be m_{2} According to the given information, $m_{2}=2 m_{1}$ $\frac{d y}{d x}=\frac{2(y+3)}{x+4}$ Seperating the variables we get $\frac{d y}{(y+3)}=\frac{2 d x}{(x+4)}$ Integrating on both sides we get $\int \frac{d y}{(y+3)}=2 \int \frac{2 d x}{(x+4)}$ or $\log (y+3)=2 \log (x+4)+\log c$ $\log (y+3)=\log c \cdot(x+4)^{2}$ $y+3=c(x+4)^{2}$ It is given that the curve passes through the point $-2,1$ Substituting for xx and yy in the general equation to evaluate for cc we get $\begin{aligned} & 1+3=c(-2+4)^{2} \\ & 4=4 c \\ & c=1 \end{aligned}$ substituting this for c, we get $y+3=(x+4)^{2}$ is the required equation of the curve ans.
Q.4)	Solve the D.E. $\quad \sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}=x y \frac{d y}{d x}=0$
Sol.4)	We have, $\frac{d y}{d x}=-\frac{\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}}{x y}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \Rightarrow \frac{d y}{d x}=-\frac{\sqrt{\left(1+x^{2}\right)\left(1+y^{2}\right)}}{x y} \\ & \Rightarrow \frac{d y}{d x}=-\frac{\sqrt{1+x^{2}} \sqrt{1+y^{2}}}{x y} \end{aligned}$ Separate the variables \& interpreting both sides $\Rightarrow \int \frac{y}{\sqrt{1+y^{2}}} d x=-\int \frac{\sqrt{1+x^{2}}}{x} d x$ Put $1+y^{2}=t$ put $1+x^{2}=z^{2}$ $y d y=\frac{d t}{2}$ $2 x d x=2 x d z$ $d x=\frac{z d z}{x}$ $\begin{aligned} & \therefore \frac{1}{2} \int \frac{d t}{\sqrt{t}}=-\int \frac{z}{x} \cdot \frac{z d x}{x} \\ & \Rightarrow \frac{1}{2} \times 2 \sqrt{t}=-\int \frac{z^{2}}{z^{2}-1} d z \\ & \sqrt{t}=-\int \frac{z^{2}-1+1}{z^{2}-1} d z \\ & \Rightarrow \sqrt{t}=-\int 1+\frac{1}{z^{2}-1} d z \\ & \Rightarrow \sqrt{1+y^{2}}=-\left[z+\frac{1}{2} \log \left\|\frac{z-1}{z+1}\right\|\right]+c \\ & \Rightarrow \sqrt{1+y^{2}}=-\left[\sqrt{1+x^{2}}+\frac{1}{2} \log \left\|\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}\right\|\right]+c \\ & \Rightarrow \sqrt{1+x^{2}}+\sqrt{1+y^{2}}+\frac{1}{2} \log \left\|\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}\right\|=c \quad \text { ans. } \end{aligned}$
Q.5)	Find the equation of the curve passing through the point $(1,0)$ given that slope of the tangent to the curve at any point (x, y) is $\frac{2 x(\log x+1)}{\sin y+y \cos y}$.
Sol.5)	Slope of tangent at any point (x, y) is given by $\frac{d y}{d x}$ We have, $\frac{d y}{d x}=\frac{2 x(\log x+1)}{\sin y+y \cos y}$ $\Rightarrow(\sin y+y \cos y) d y=2 x(\log x+1) d x$ Interpreting both sides $\begin{aligned} & \int(\sin y+y \cos y) d y=2 \int x(\log x+1) d x \\ & \Rightarrow \int \sin y d y+\int y \cos y d y=2 \int x d x+2 \int x \log x d x \\ & \Rightarrow-\cos y+y \sin x-\int \sin y d y=\frac{2 x^{2}}{2}+2\left[\log x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right] \\ & \Rightarrow-\cos y+y \sin y+\cos y=y+2\left(\frac{x^{2}}{2} \log x-\frac{x^{2}}{4}\right)+c \\ & \Rightarrow y \sin y=x^{2}+x^{2} \log x-\frac{x^{2}}{2}+c \end{aligned}$ This equation passes through the point $(1,0)$ Put $x=1$ and $y=0$ $\begin{aligned} & \Rightarrow 0=1+0=-\frac{1}{2}+c \\ & \Rightarrow c=-\frac{1}{2} \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \therefore y \sin y=x^{2}+x^{2} \log x-\frac{x^{2}}{2}-\frac{1}{2} \\ & \Rightarrow y \sin y=\frac{x^{2}}{2}+x 62 \log x-\frac{1}{2} \\ & \Rightarrow 2 y \sin y=x^{2}+2 x^{2} \log x-1 \text { is the required equation of curve. ans. } \end{aligned}$
Q.6)	Solve the D.E. $\quad 3 e^{x} \tan y d y+\left(1-e^{x}\right) \sec ^{2} y d y=0$
Sol.6)	We have, $\left(1-e^{x}\right) \sec ^{2} y d y=-3 e^{x} \tan y d x$ $\Rightarrow \frac{d y}{d x}=\frac{-3 e^{x} \tan y}{\left(1-e^{x}\right) \sec ^{2} y}$ Separating variables \& interpreting both sides $\Rightarrow \int \frac{\sec ^{2} y}{\tan y} d y=-3 \int \frac{e^{x}}{1-e^{x}} d x$ Put $\tan y=t$ Put $1-e^{x}=z$ $\sec ^{2} y d y=d t$ $-e^{x} d x=d z$ $\Rightarrow \log \|t\|=3 \log z+\log c$ $\Rightarrow \log \left\|\frac{t}{z^{3}}\right\|=\log c$ Replace $t \& z$ $\begin{aligned} & \Rightarrow\left\|\frac{\tan y}{\left(e^{x}-1\right)^{3}}\right\|=c \\ & \Rightarrow \frac{\tan y}{\left(e^{x}-1\right)^{3}}= \pm c \\ & \Rightarrow \tan y=c_{1}\left(e^{x}-1\right)^{3} \text { where } c_{1}= \pm c \text { is the required solution. } \end{aligned}$
Q.7)	For the D.E. $\quad x y \frac{d y}{d x}=(x+2)(y+2)$. Find the solution curve passes through (1,-1).
Sol.7)	$\begin{aligned} & \text { We have, } \frac{d y}{d x}=\frac{(x+2)(y+2)}{x y} \\ & \Rightarrow \frac{y}{y+2} d y=\frac{x+2}{x} d x \end{aligned}$ Interpreting both sides $\begin{aligned} & \Rightarrow \int \frac{y+2-2}{y+2} d y=\int \frac{x}{x}+\frac{2}{x} d x \\ & \Rightarrow \int 1-\frac{2}{y+2} d y=\int 1+\frac{2}{x} d x \\ & \Rightarrow y-2 \log \|y+2\|=x+2 \log \|x\|+c \end{aligned}$ It is passes through the point $(1,-1)$ Put $x=1 \& y=-1$ $\begin{aligned} & \therefore-1+2 \log \|1\|=1+2 \log \|1\|+c \\ & \Rightarrow-1+0=1+0=c \Rightarrow c=-2 \\ & \therefore y-2 \log \|y+2\|=x+2 \log \|x-2\| \\ & \int \frac{y}{y+2} d y=\int \frac{x+2}{x} d x \\ & \Rightarrow y=x+2=2 \log \|x\|+2 \log \|y+2\| \\ & \Rightarrow y-x+2=\log \left\|x^{2}(y+2)^{2}\right\| \\ & \Rightarrow y-x+2=\log \left(x^{2}(y+2)^{2}\right) \end{aligned}$ ans.
Q.8)	In a bank principal increases at the rate of 5\% per year. In how many years Rs. 1000

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	double itself.
Sol.8)	Let P be the principal at any time t Then, according to question $\begin{aligned} & \frac{d p}{d t}=5 \frac{p}{100} \\ & \Rightarrow \frac{d p}{d t}=\frac{p}{20} \\ & \Rightarrow \frac{1}{p} d p=\frac{1}{20} d t \end{aligned}$ Interpreting both sides $\begin{aligned} & \int \frac{1}{p} d p=\frac{1}{20} \int d t \\ & \Rightarrow \log p=\frac{1}{20} t+c \\ & \Rightarrow p=e^{\frac{1}{20} t+c} \\ & \Rightarrow p=e^{\frac{t}{20}} \cdot e^{c} \\ & p=e^{\frac{t}{20}}-c_{1} \text { when } c_{1}=e^{c} \end{aligned}$ Given at $t=0 ; p=1000$ $\begin{aligned} & \therefore 1000=e^{0} \cdot c_{1} \\ & \Rightarrow c_{1}=1000 \\ & \therefore p=e^{\frac{t}{20}} .1000 \end{aligned}$ Let at $t=t ; p=2000$ $\Rightarrow 2000=e^{\frac{t_{1}}{20}} .1000$ $\Rightarrow e^{\frac{t_{1}}{20}}=2$ Taking \log on both sides $\begin{aligned} & \frac{t_{1}}{20}=\log 2 \\ & t_{1}=20 \log _{e} 2 \text { years } \\ & \therefore \text { principal doubles in } 20 \log _{e} 2 \text { years } \end{aligned}$
Q.9)	The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units $\&$ after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.
Sol.9)	Let the rate of change of the volume of balloon be k Hence $\frac{d v}{d t}=k$ $\begin{aligned} & \frac{d}{d t}\left(\frac{4}{3} r r^{3}\right)=k \\ & \frac{4}{3} r\left(3 \pi^{2}\right) \cdot\left(\frac{d r}{d t}\right)=k \end{aligned}$ Now seperating the variables, we get $4 r r^{2}$. $d r=k . d t$ Integrating on both sides we get $4 r \int r^{2} d r=k \int d t$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & 4 r\left(\frac{r^{3}}{3}\right)=k t+C \\ & 4 r r^{3}=3 \cdot(k t+C) \\ & \text { Given } t=0, r=3 t=0, r=3 \\ & 4 r\left(3^{3}\right)=3(k \cdot 0+C) \\ & 108 r=3 C \\ & C=36 r \\ & \text { when } t=3, r=6 t=3, r=6 \\ & 4 r \cdot 6^{3}=3 \cdot(k \cdot 3+C) \\ & 864 r=3 \cdot(3 k+36 r) \end{aligned}$ Now Dividing throughout by 3 we get $\begin{aligned} 3 k & =-288 r-36 r \\ 3 k & =252 r \end{aligned}$ Hence $k=84 r$ Now substituting the values of k and c we get $4 r r^{3}=3(84 r . t+36 r) 4 r$ Taking 4 r 4 r as a common factor $4 r . r^{3}=4 r .63 t+27$ Dividing throughout by $4 r$ we get $r^{3}=63 t+27$ $r=(63 t+27)^{\frac{1}{3}}$ Thus the radius of the balloon after t seconds is $(63 t+27)^{\frac{1}{3}} \quad$ ans.
Q.10)	In a culture the bacteria count is $1,00,000$. The number is increases by 10% in 2 hours. In how many hours will the count reach $2,00,000$, if the rate of growth of bacteria is proportional to the number present?
Sol.10)	From the given information we know that $\frac{d y}{d t}$ is proportional to y $\frac{d y}{d t}=k y$ on separating the variables we get $\frac{d y}{y}=k . d t$ Integrating on both sides we get $\int \frac{d y}{y}=k \int d t$ $\begin{equation*} \log y=k t+c \tag{1} \end{equation*}$ Let y_{0} be the number of bacteria when $t=0$ Hence $\log y_{0}=C$ Substituting this value in equation (1) we get $\log y=k t+\log y_{0}$ $\begin{align*} & \log y-\log y_{0}=k t \\ & \log \left(\frac{y}{y_{0}}\right)=k t \quad \ldots .(2) \tag{2} \end{align*}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	It is also given that the number of bacteria increases 10% in 2 hours Hence $y=110 \frac{y_{0}}{100}$ Let y_{0} be the number of bacteria when $t=0$ $y_{0}=\frac{11}{10}$ Substituting this in (2) we get $2 k=\log \left(\frac{11}{10}\right)$ or $k=\frac{1}{2} \log \frac{11}{10}$ Therefore $\frac{1}{2} \log \left(\frac{11}{10}\right) t=\log \left(\frac{y}{y_{0}}\right)$ $t=\frac{2 \log \left(\frac{y}{y_{0}}\right)}{\log \left(\frac{11}{10}\right)}$ Let the time when the number of bacteria increases from $1,00,000$ to $2,00,000$ be t_{1} $y=2 \cdot y_{0}$ at $t=t_{1}$ Hence $t_{1}=\frac{2 \log \left(\frac{y}{y_{0}}\right)}{\log \left(\frac{11}{10}\right)}=\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$ Hence in $\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$ the number of bacteria increases from $1,00,000$ to $2,00,000$$\quad$ ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

