

	Class 12 Linear Differential Equation
	Class 12 th
Q.1)	Show that the general solution of the D.E.
	$\frac{dy}{dx} + \frac{y^2 + y + 1}{x^2 + x + x} = 0$ is given by $x + y + 1 = A(x - x - y - 2xy)$ where A is the parameter.
Sol.1)	We have, $\frac{dy}{dx} = -\frac{y^2 + y + 1}{x^2 + x + 1}$ $\Rightarrow \frac{dy}{y^2 + y + 1} = \frac{-dx}{x^2 + x + 1}$ Interpreting both sides
	$\int \frac{dy}{(y^2 + y + 1)} = -\int \frac{dx}{(x^2 + x + 1)}$ $\Rightarrow \int \frac{1}{(y + \frac{1}{2})^2 - \frac{1}{4} + 1} dy = -\int \frac{1}{(x + \frac{1}{2})^2 + \frac{1}{4} + 1} dx$
	$\Rightarrow \int \frac{1}{\left(y + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dy = -\int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dx$
	$\Rightarrow \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2y+1}{\sqrt{3}} \right) = -\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + c$ $\Rightarrow \frac{2}{\sqrt{3}} \left(\tan^{-1} \left(\frac{2y+1}{\sqrt{3}} \right) + \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) = c$
	$\Rightarrow \tan^{-1}\left(\frac{\frac{2y+1}{\sqrt{3}} + \frac{2x+1}{\sqrt{3}}}{1\left(\frac{2y+1}{\sqrt{3}}\right)\left(\frac{2x+1}{\sqrt{3}}\right)} = \frac{\sqrt{3}}{2}c\right)$ $\Rightarrow \tan^{-1}\left(\frac{\frac{2x+2y+2}{\sqrt{3}}}{3-4xy-2y-2x-1} = \frac{\sqrt{3}}{2}c\right)$
	$ \frac{1\left(\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}\right)}{\sqrt{3}} \stackrel{2}{\Rightarrow} \tan^{-1}\left(\frac{\frac{2x+2y+2}{\sqrt{3}}}{\frac{3-4xy-2y-2x-1}{\sqrt{3}}} = \frac{\sqrt{3}}{2}c\right) $ $ \Rightarrow \frac{(2x+2y+2)\sqrt{3}}{2-4xy-2x-2y} = \tan\left(\frac{\sqrt{3}}{2}c\right) $ $ \Rightarrow \frac{(x+y+1)}{1-2xy-x-y} = \frac{1}{\sqrt{3}}\tan\left(\frac{\sqrt{3}}{2}c\right) $
	$\Rightarrow \frac{x+y+1}{1-2xy-x-y} = A; \text{ where } A = \frac{1}{\sqrt{3}} \tan\left(\frac{\sqrt{3}}{2}c\right)$ $\Rightarrow (x+y-1) = A(1-2xy-x-y) \text{ is the required solution} \text{ans.}$
Q.2)	Find the particular solution of the D.E.
	$(1 + e^{2x})dy + (1 + y^2)e^x dx = 0$; given $x = 0, y = 1$
Sol.2)	We have, $(1 + e^{2x})dy = -(1 + y^2)e^x dx$
	$\Rightarrow \frac{dy}{dx} = -\frac{1+y^2e^x}{1+e^xdx}$
	ax 1+ $e^{x}ax$ Separating the variables & interpreting both sides
	$\Rightarrow \int \frac{dy}{1+y^2} = -\int \frac{ex}{1+e^{2x}} dx$
	$\Rightarrow \tan^{-1} y = -\int \frac{dt}{1+t^2}$
	$\Rightarrow \tan^{-1} y = -\tan^{-1} t + c$
	$\Rightarrow \tan^{-1}(y) + \tan^{-1}(e^x) = c$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	Put $x = 0 & y = 1$
	$\Rightarrow \frac{r}{4} + \tan^{-1}(1) = c \Rightarrow c = \frac{r}{4} + \frac{r}{4} = \frac{r}{2}$
	$\therefore \tan^{-1}(y) + \tan^{-1}(e^x) = \frac{r}{2}$
	$\Rightarrow \tan^{-1}\left(\frac{y+e^x}{1-ye^x}\right) = \frac{r}{2}$
	$\Rightarrow \frac{y + e^x}{1 - y e^x} = \tan\left(\frac{r}{2}\right)$
	$\Rightarrow \frac{y + e^x}{1 - y e^x} = \frac{1}{0} \dots \left\{ \tan \left(\frac{r}{2} \right) = \alpha \right\}$
	$\Rightarrow 0 = 1 - ye^x$
	$\Rightarrow y = \frac{1}{e^x}$ is the required solution ans.
Q.3)	At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line
	segment joining the point of contact to the point $(-4, -3)$. Find the equation of the
	curve given that it passes through $(-2,1)$.
Sol.3)	It is given that xy is the point of contact of the curve and its tangent.
	Hence the slope $= y + 3 + 4$.
	Let this be m_1
	but we know that slope of the tangent to the curve is $\frac{dy}{dx}$
	Let this be m_2
	According to the given information, $m_2=2m_1$
	$\frac{dy}{dx} = \frac{2(y+3)}{x+4}$
	Seperating the variables
	we get $\frac{dy}{(y+3)} = \frac{2dx}{(x+4)}$
	Integrating on both sides
	we get $\int \frac{dy}{(y+3)} = 2 \int \frac{2dx}{(x+4)}$
	$or \log(y+3) = 2\log(x+4) + \log c$
	$\log(y+3) = \log c \cdot (x+4)^2$
	$y+3=c(x+4)^2$
	It is given that the curve passes through the point $-2,1$
	Substituting for xx and yy in the general equation to evaluate for cc we get
	$1 + 3 = c(-2 + 4)^2$
	4 = 4c
	c = 1
	substituting this for c , we get
	$y + 3 = (x + 4)^2$ is the required equation of the curve ans.
Q.4)	Solve the D.E. $\sqrt{1 + x^2 + y^2 + x^2y^2} = xy\frac{dy}{dx} = 0$
Sol.4)	We have, $\frac{dy}{dx} = -\frac{\sqrt{1+x^2+y^2+x^2y^2}}{xy}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

$$\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{(1+x^2)(1+y^2)}}{xy}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{(1+x^2)}\sqrt{1+y^2}}{xy}$$
Separate the variables & interpreting both sides
$$\Rightarrow \int \frac{y}{\sqrt{1+y^2}} dx = -\int \frac{\sqrt{1+x^2}}{x} dx$$

$$\text{Put } 1 + y^2 = t \qquad \text{put } 1 + x^2 = z^2$$

$$ydy = \frac{dt}{2} \qquad 2xdx = 2xdz$$

$$dx = \frac{zdx}{x}$$

$$\therefore \frac{1}{2} \int \frac{dt}{\sqrt{t}} = -\int \frac{z}{x} \frac{zdx}{x}$$

$$\Rightarrow \frac{1}{z} \times 2\sqrt{t} = -\int \frac{z}{z^2-1} dz$$

$$\sqrt{t} = -\int 1 + \frac{1}{z^2-1} dz$$

$$\Rightarrow \sqrt{t} = -\int 1 + \frac{1}{z^2-1} dz$$

$$\Rightarrow \sqrt{1+y^2} = -\left[\sqrt{1+x^2} + \frac{1}{2}\log\left|\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}\right|\right] + c$$

$$\Rightarrow \sqrt{1+y^2} = -\left[\sqrt{1+x^2} + \frac{1}{2}\log\left|\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}\right|\right] + c$$

$$\Rightarrow \sqrt{1+x^2} + \sqrt{1+y^2} + \frac{1}{2}\log\left|\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}\right| = c \quad \text{ans.}$$
Q.5)

Find the equation of the curve passing through the point (1,0) given that slope of the tangent to the curve at any point (x,y) is $\frac{zx\log x+1}{\sin y + y \cos y}$.

Sol.5)

Slope of tangent at any point (x,y) is $\frac{zx\log x+1}{\sin y + y \cos y}$.

We have, $\frac{dy}{dx} = \frac{zx(\log x+1)}{\sin y + y \cos y}$

$$\Rightarrow (\sin y + y \cos y) dy = 2 \int x (\log x + 1) dx$$
Interpreting both sides
$$\int (\sin y + y \cos y) dy = 2 \int x (\log x + 1) dx$$

$$\Rightarrow \int \sin y dy + \int y \cos y dy = 2 \int x dx + 2 \int x \log x dx$$

$$\Rightarrow -\cos y + y \sin x - \int \sin y dy = \frac{2x^2}{2} + 2 \left[\log x \cdot \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} dx\right]$$

$$\Rightarrow -\cos y + y \sin y + \cos y = y + 2 \left(\frac{x^2}{2} \log x - \frac{x^2}{4}\right) + c$$

$$\Rightarrow y \sin y = x^2 + x^2 \log x - \frac{x^2}{2} + c$$
This equation passes through the point (1,0)
Put $x = 1$ and $y = 0$

$$\Rightarrow 0 = 1 + 0 = -\frac{1}{2} + c$$

$$\Rightarrow c = -\frac{1}{2}$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	2 .
	$\therefore y \sin y = x^2 + x^2 \log x - \frac{x^2}{2} - \frac{1}{2}$
	$\Rightarrow y \sin y = \frac{x^2}{2} + x62 \log x - \frac{1}{2}$
	$\Rightarrow 2y \sin y = x^2 + 2x^2 \log x - 1$ is the required equation of curve. ans.
Q.6)	Solve the D.E. $3e^{x} \tan y dy + (1 - e^{x}) \sec^{2} y dy = 0$
Sol.6)	We have, $(1 - e^x) \sec^2 y dy = -3e^x \tan y dx$
	$\Rightarrow \frac{dy}{dx} = \frac{-3e^x \tan y}{(1-e^x)\sec^2 y}$
	Separating variables & interpreting both sides
	$\Rightarrow \int \frac{\sec^2 y}{\tan y} dy = -3 \int \frac{e^x}{1 - e^x} dx$
	tan'y
	Put $\tan y = t$ Put $1 - e^x = z$
	$\sec^2 y dy = dt \qquad -e^x dx = dz$
	$\Rightarrow \log t = 3\log z + \log c$
	$\Rightarrow \log \left \frac{t}{z^3} \right = \log c$
	Replace t & z
	$\Rightarrow \left \frac{\tan y}{(e^x - 1)^3} \right = c$
	$\Rightarrow \frac{\tan y}{(e^x - 1)^3} = \pm c$
	$\Rightarrow \tan y = c_1(e^x - 1)^3$ where $c_1 = \pm c$ is the required solution.
Q.7)	For the D.E. $xy\frac{dy}{dx} = (x+2)(y+2)$. Find the solution curve passes through (1,-1).
Sol.7)	We have, $\frac{dy}{dx} = \frac{(x+2)(y+2)}{xy}$
	$\Rightarrow \frac{y}{y+2} dy = \frac{x+2}{x} dx$
	Interpreting both sides $(x^2+2)^2 + (x^2+2)^2 + (x^2$
	$\Rightarrow \int \frac{y+2-2}{y+2} dy = \int \frac{x}{x} + \frac{2}{x} dx$
	$\Rightarrow \int 1 - \frac{2}{y+2} dy = \int 1 + \frac{2}{x} dx$
	$\Rightarrow y - 2\log y + 2 = x + 2\log x + c$
	It is passes through the point (1,-1)
	Put $x = 1 & y = -1$
	$\therefore -1 + 2\log 1 = 1 + 2\log 1 + c$
	$\Rightarrow -1 + 0 = 1 + 0 = c \Rightarrow c = -2$ \(\therefore\) y - 2\log y + 2 = x + 2\log x - 2
	$\int \frac{y}{y+2} dy = \int \frac{x+2}{x} dx$
	$\Rightarrow y = x + 2 = 2\log x + 2\log y + 2 $
	$\Rightarrow y - x + 2 = \log x^2(y+2)^2 $
Q.8)	$\Rightarrow y - x + 2 = \log(x^2(y+2)^2)$ ans. In a bank principal increases at the rate of 5% per year. In how many years Rs.1000

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	double itself.
Sol.8)	Let P be the principal at any time t
	Then, according to question
	$\frac{dp}{dt} = 5\frac{p}{100}$
	$\Rightarrow \frac{dp}{dt} = \frac{p}{20}$
	$\Rightarrow \frac{1}{p}dp = \frac{1}{20}dt$
	Interpreting both sides
	$\int \frac{1}{p} dp = \frac{1}{20} \int dt$
	$\Rightarrow \log p = \frac{1}{20}t + c$
	$\Rightarrow p = e^{\frac{1}{20}t + c}$
	$\Rightarrow p = e^{\frac{t}{20}} \cdot e^c$
	$p=e^{rac{t}{20}}-c_1$ when $c_1=e^c$
	Given at $t = 0$; $p = 1000$
	$\therefore 1000 = e^0.c_1$
	$\Rightarrow c_1 = 1000$
	$\therefore p = e^{\frac{t}{20}}.1000$
	Let at $t = t$; $p = 2000$
	$\Rightarrow 2000 = e^{\frac{t_1}{20}}.1000$
	$\Rightarrow e^{\frac{t_1}{20}} = 2$
	Taking log on both sides
	$\frac{t_1}{20} = \log 2$
	$t_1 = 20 \log_e 2 \ years$
	\therefore principal doubles in $20\log_e 2$ years ans.
Q.9)	The volume of a spherical balloon being inflated changes at a constant rate. If initially its
	radius is 3 units & after 3 seconds it is 6 units. Find the radius of the balloon after
	t seconds.
Sol.9)	Let the rate of change of the volume of balloon be k
	Hence $\frac{dv}{dt} = k$
	$\left \frac{d}{dt} \left(\frac{4}{3} r r^3 \right) = k \right $
	$\frac{4}{3}r(3\pi^2).\left(\frac{dr}{dt}\right) = k$
	Now seperating the variables,
	we get $4rr^2$. $dr = k$. dt
	Integrating on both sides we get
	$4r \int r^2 dr = k \int dt$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$4r\left(\frac{r^3}{3}\right) = kt + C$
	$4rr^3 = 3.(kt + C)$
	Given $t = 0, r = 3t = 0, r = 3$
	$4r(3^3) = 3(k.0 + C)$
	108r = 3C
	C = 36r
	when $t = 3, r = 6t = 3, r = 6$
	$4r.6^3 = 3.(k.3 + C)$
	864r = 3.(3k + 36r)
	Now Dividing throughout by 3 we get
	3k = -288r - 36r
	3k = 252r
	Hence $k = 84r$
	Now substituting the values of k and c
	we get $4rr^3 = 3(84r.t + 36r)4r$
	Taking 4r4r as a common factor
	$4r.r^3 = 4r.63t + 27$
	Dividing throughout by $4r$
	we get $r^3 = 63t + 27$
	$r = (63t + 27)^{\frac{1}{3}}$
	Thus the radius of the balloon after t seconds is $(63t + 27)^{\frac{1}{3}}$ ans.
Q.10)	In a culture the bacteria count is 1,00,000. The number is increases by 10% in 2 hours. In
	how many hours will the count reach 2,00,000, if the rate of growth of bacteria is
	proportional to the number present?
Sol.10)	From the given information we know that $\frac{dy}{dt}$ is proportional to y
	$\frac{dy}{dt} = ky$
	on separating the variables
	we get $\frac{dy}{y} = k. dt$
	Integrating on both sides
	we get $\int \frac{dy}{y} = k \int dt$
	$\log y = kt + c \qquad \dots \dots (1)$
	Let y_0 be the number of bacteria when $t=0$
	Hence $\log y_0 = C$
	Substituting this value in equation (1) we get $\log y = kt + \log y_0$
	$\log y - \log y_0 = kt$
	$\log\left(\frac{y}{y_0}\right) = kt \dots (2)$
	\(\frac{1}{2}\)

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

It is also given that the number of bacteria increases 10% in 2 hours

Hence
$$y = 110 \frac{y_0}{100}$$

Let y_0 be the number of bacteria when t=0

$$y_0 = \frac{11}{10}$$

Substituting this in (2)

we get
$$2k = log\left(\frac{11}{10}\right)$$

or
$$k = \frac{1}{2} \log \frac{11}{10}$$

Therefore $\frac{1}{2}\log\left(\frac{11}{10}\right)t = \log\left(\frac{y}{y_0}\right)$

$$t = \frac{2\log\left(\frac{y}{y_0}\right)}{\log\left(\frac{11}{10}\right)}$$

Let the time when the number of bacteria increases from 1,00,000 to 2,00,000 be t_1

$$y = 2. y_0$$
 at $t = t_1$

Hence
$$t_1 = \frac{2\log(\frac{y}{y_0})}{\log(\frac{11}{10})} = \frac{2\log 2}{\log(\frac{11}{10})}$$

Hence in $\frac{2\log 2}{\log \left(\frac{11}{10}\right)}$ the number of bacteria increases from 1,00,000 to 2,00,000

ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.