

	Class 12 Linear Differential Equation
	Class 12 th
Q.1)	Solve the D.E.
	$ydx + x\log y dy - x\log x dy - 2x dy = 0$
Sol.1)	We have, $y dx + x dy(\log y - \log x) - 2xdy = 0$
	$\Rightarrow y dx + x dy \cdot \log\left(\frac{y}{x}\right) - 2xdy = 0$
	$\Rightarrow dy(x\log\frac{y}{x} - 2x) = -ydx$
	$\Rightarrow \frac{dy}{dx} = -\frac{y}{x \log(\frac{y}{x}) - 2x} \qquad \dots (i)$
	It is a homogeneous D.E.
	Put $y = vx \Rightarrow \frac{dy}{dx} = v + \frac{xdv}{dx}$ put in eq. (i)
	$v + \frac{xdv}{dx} = \frac{-vx}{x\log v - 2x}$
	$v + \frac{1}{dx} = \frac{1}{x \log v - 2x}$ $\Rightarrow v + x \frac{dv}{dx} = \frac{-v}{\log v - 2}$
	$\Rightarrow \chi \frac{dv}{dx} = \frac{-v}{\log v - 2} - v$
	$\Rightarrow \frac{xdv}{dx} = \frac{-v - v \log v + 2v}{\log v - 2}$
	$\Rightarrow \frac{xdv}{dx} = \frac{v - v \log v}{\log v - 2}$
	$\Rightarrow \frac{xdv}{dx} = \frac{-v(\log v - 1)}{\log v - 2}$
	$\Rightarrow \frac{\log v - 2}{v(\log v - 1)} = -\frac{dx}{x}$
	Interpreting both sides
	$\int \frac{\log v - 2}{v(\log v - 1)} \ dv = -\int \frac{dx}{x}$
	$Put \log v - 1 = t$
	Put $\log v - 1 = t$ $\frac{1}{v}dv = dt$
	$\therefore \int \frac{t-1}{t} dt = -\log x $
	$=\int 1 - \frac{1}{t}dt = -\log x $
	$\Rightarrow t - \log t = -\log x + c$
	$\Rightarrow \log v - 1 - \log v - 1 = -\log x + c$
	$\Rightarrow \log \frac{vx}{\log v - 1} = c + 1$
	Replace v by $\frac{y}{x}$
	$\Rightarrow \log \frac{y}{\log(\frac{y}{x}) - 1} = c + 1$
	$\Rightarrow \log \frac{v}{\log v - 1} = c + 1$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\Rightarrow \frac{y}{\log(\frac{y}{x}) - 1} = e^{c+1}$
	$\Rightarrow \frac{y}{\log(\frac{y}{x}) - 1} \pm e^{c + 1}$
	$\Rightarrow y = c_1 \left(\log \left(\frac{y}{x} \right) - 1 \right)$; where $c_1 = \pm e^{c+1}$ is the required general solution ans.
Q.2)	Solve the D.E.
	$\left(xe^{\frac{y}{x}} + y\right)dx = xdy; y(1) = 1$
Sol.2)	We have, $\frac{dy}{dx} = \frac{xe^{\frac{y}{x}} + y}{x}$ (i)
	Note: it is not homogeneous function D.E.
	Put $y = vx$
	Diff. w.r.t. x , $\frac{dy}{dx} = v + \frac{xdv}{dx}$ put is eq.(i)
	$v + \frac{xdv}{dx} = \frac{xe^v + vx}{x}$
	$\Rightarrow v + \frac{xdv}{dx} = e^v + v$
	$\Rightarrow \frac{xdv}{dx} = e^v$
	$\Rightarrow e^{-v}dv = \frac{dx}{x}$
	$\Rightarrow \int -e^{-v} = \log x + c$
	$\Rightarrow e^{-v} + \log x = -c$
	Replace v by $\frac{y}{x}$
	$e^{-\frac{y}{x}} + \log x = -c$
	Put $x = 1$ and $y = 1$
	$\Rightarrow e^{-1} + \log 1 = -c$
	$\Rightarrow \frac{1}{e} = -c$ put in above equation
	$\Rightarrow e^{-\frac{y}{x}} + \log x = \frac{1}{e}$ is the required solution ans.
Q.3)	Solve the D.E. $xy \log\left(\frac{x}{y}\right) dx + \left(y^2 - x^2 \log\left(\frac{x}{4}\right)\right) dy = 0$
Sol.3)	We have, $xy \log \left(\frac{x}{y}\right) dx = -(y^2 - x^2 \log \left(\frac{x}{y}\right) dy$
	$\Rightarrow \frac{dx}{dy} = \frac{-\left(y^2 - x^2 \log\left(\frac{x}{y}\right)\right)}{xy \log\left(\frac{x}{y}\right)}$
	It is a homogeneous D.E>
	Put $x = vy$
	Diff. w.r.t y , $\frac{dx}{dy} = v + \frac{ydv}{dy}$
	$\Rightarrow v + \frac{ydv}{dy} = \frac{-(y^2 - v^2y^2 \log v)}{vy^2 \log v}$
	$\Rightarrow v + \frac{ydv}{dy} = \frac{-(1 - v^2 \log v)}{v \log v}$
	$\int \int dy = v \log v$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

$$\Rightarrow \frac{\gamma dv}{dy} = \frac{-(1-v^2)\log v}{v\log v} - v$$

$$\Rightarrow \frac{\gamma dv}{dy} = \frac{-1}{v\log v}$$

$$\Rightarrow \frac{\gamma dv}{dy} = \frac{-1}{v\log v}$$

$$\Rightarrow \frac{\gamma dv}{dy} = \frac{-1}{v\log v}$$

$$\Rightarrow v\log v \ dv = -\frac{dy}{y}$$

$$\Rightarrow \log v \ v = -\int \frac{dy}{y}$$

$$\Rightarrow \log v \ v^{\frac{2}{2}} - \int \frac{1}{v} \cdot v^{\frac{2}{2}} dv = -\log|y|$$

$$\Rightarrow \frac{v^{2}}{2} \log v - \frac{1}{2} \int v \ dv = -\log|y|$$

$$\Rightarrow \frac{v^{2}}{2} \log v - \frac{v^{2}}{2} = -2\log|y| + c$$

$$\Rightarrow v^{2} \log v - \frac{v^{2}}{2} = -2\log|y| + 2c$$
Replace $v \text{ by } \frac{x}{y}$

$$\Rightarrow \frac{v^{2}}{y^{2}} \log\left(\frac{x}{y}\right) - \frac{1}{2} \left(\frac{x^{2}}{y^{2}}\right) - 2\log|y| + 2c$$
Replace $v \text{ by } \frac{x}{y}$

$$\Rightarrow \frac{v^{2}}{y^{2}} \log\left(\frac{x}{y}\right) - \frac{1}{2} \left(\frac{y^{2}}{y^{2}}\right) - 2\log|y| + 2c$$
Reducible To Variable Separate Form (Put bracket = v)

Q.4) Solve the D.E.
$$\sin^{-1}\left(\frac{dy}{dx}\right) = x + y$$
Sol.4) We have, $\sin^{-1}\left(\frac{dx}{dx}\right) = x + y$

$$\Rightarrow \frac{dy}{dx} = \sin(x + y)$$
Put $x + y = v$
Diff, w.r.t. $x, 1 + \frac{dy}{dx} = \frac{dv}{dx}$

$$\frac{dy}{dx} = \frac{dv}{dx} - 1$$

$$\therefore \frac{dv}{dx} - 1 = \sin v$$

$$\Rightarrow \frac{dv}{dx} = 1 + \sin v$$

$$\Rightarrow \frac{dv}{dx} = 1 + \sin v$$

$$\Rightarrow \int \frac{dv}{1 + \sin v} = \int dx$$

$$\int \frac{1}{1 + \sin x} \times \frac{1 - \sin v}{1 - \sin v} dv = \int dx$$
 (Rationalize)
$$\Rightarrow \int \frac{1 - \sin v}{\cos^{2}v} dv = x$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

ans.

 $\Rightarrow \int \sec^2 v - \tan v \cdot \sec v \cdot dv = x$

 $\Rightarrow \tan v - \sec v = x + c$ Replace v by x + y

Solve the D.E.

Q.5)

	$(x+y)^2 dy = a^2$
	$(x+y)^2 \frac{dy}{dx} = a^2$
Sol.5)	We have, $\frac{dy}{dx} = \frac{a^2}{(x+y)^2}$ (i)
	Put x + y = v
	Diff. w.r.t x , $1 + \frac{dy}{dx} = \frac{dv}{dx}$
	$\Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1$
	∴ equation (i) becomes
	$\frac{dv}{dx} - 1 = \frac{a^2}{v^2}$
	$\Rightarrow \frac{dv}{dx} = \frac{a^2}{v^2} + 1$
	$\Rightarrow \frac{dv}{dx} = \frac{a^2 + v^2}{v^2}$
	$\Rightarrow \frac{v^2}{v^2 + a^2} dv = dx$
	Interpreting both sides
	$\int \frac{v^2}{v^2 + a^2} dv = \int dx$
	$\Rightarrow \int \frac{v^2 + a^2 - a^2}{v^2 + a^2} dv = \int dx$
	$\Rightarrow \int 1 - \frac{a^2}{v^2 + a^2} dv = \int dx$
	$\Rightarrow v - a^2 \times \frac{1}{a} \tan^{-1} \left(\frac{v}{a} \right) = x + c$
	Replace v by $(x + y)$
	$\Rightarrow x + y - \arctan^{-1}\left(\frac{x+y}{a}\right)x + c$
	$\Rightarrow y = \operatorname{atan}^{-1}\left(\frac{x+y}{a}\right) + c \text{ is the required solution} \qquad \text{ans.}$
Q.6)	Solve $\frac{dy}{dx} = \cos(x+y) + \sin(x+y)$
Sol.6)	Put x + y = v
	Diff. w.r.t x , $1 + \frac{dy}{dx} = \frac{dv}{dx}$
	$\Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1$
	$\therefore \frac{dv}{dx} - 1 = \cos v + \sin v$
	$\Rightarrow \frac{dv}{dx} = 1 + \cos v + \sin v$
	$\Rightarrow \int \frac{1}{1+\sin v + \cos v} dv = \int dx$
	$(Type\ single\ sin\ x, cos\ x)$
	$\Rightarrow \int \frac{1}{1 + \frac{2 \tan \frac{v}{2}}{1 + \tan^2 \frac{v}{2}} + \frac{1 - \tan^2 \frac{v}{2}}{1 + \tan^2 \frac{v}{2}}} dv = x$
	$\Rightarrow \int \frac{1 + \tan^2 \frac{v}{2}}{1 + \tan^2 \left(\frac{v}{2}\right) + 2 \tan\left(\frac{v}{2}\right) + 1 - \tan^2 \left(\frac{v}{2}\right)} dv = x$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	_ /11\
	$\Rightarrow \int \frac{\sec^2(\frac{v}{2})}{2(1+\tan\frac{v}{2})} dv = x$
	$Put 1 + \tan \frac{v}{2} = t$
	$\sec^2\left(\frac{v}{2}\right).\frac{1}{2}dv = dt$
	$\Rightarrow \int \frac{dt}{t} = x$
	$\Rightarrow \log \left 1 + \tan \frac{v}{2} \right = x + c$
	$\Rightarrow \log \left 1 + \tan \left(\frac{x+y}{2} \right) \right = x + c$ ans.
Q.7)	Solve the initial problem
	(x-y)(dx + dy) = dx - dy; y(0) = -1
Sol.7)	We have, $xdx + xdy - ydx - ydy = dx - dy$
	$\Rightarrow dy(x - y + 1) = dx(1 - x + y)$
	$\Rightarrow \frac{dy}{dx} = \frac{1 - x + y}{x - y + 1}$
	$\Rightarrow \frac{dy}{dx} = \frac{1 - (x - y)}{(x - y) + 1}$
	Put $x - y = v$
	Diff. w.r.t. x , $1 - \frac{dy}{dx} = \frac{dv}{dx}$
	$\Rightarrow \frac{dy}{dx} = 1 - \frac{dv}{dx}$
	$\therefore 1 - \frac{dv}{dx} = \frac{1 - v}{v + 1}$
	$\Rightarrow = \frac{v+1-1+v}{v+1}$
	$\Rightarrow \frac{dv}{dx} = \frac{2v}{v+1}$
	$\Rightarrow \frac{v+1}{v} dv = 2dx$
	Interpreting both sides
	$\Rightarrow \int \frac{v+1}{v} dv = 2 \int dx$
	$\Rightarrow \int 1 + \frac{1}{x} dv = 2x$
	b
	$\Rightarrow v + \log v = 2x + c$
	$\Rightarrow x - y + \log x - y = 2x + c$
	$\Rightarrow \log x - y = x + y + c$
	Put $x = 0 & y = -1$
	$\Rightarrow \log 1 = 0 - 1 + c$
	$\Rightarrow 0 = -1 + c \Rightarrow c = 1$
	$\therefore \log x - y = x + y + 1$
	$\Rightarrow x - y = e^{x + y + 1}$ is the required solution ans.
	Variable Separate Form
Q.8)	Solve the D.E. $(x+1)\frac{dy}{dx} = 2e^{-y} - 1; y(0) = 0$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

C=1 0)	$dy = 2e^{-y}-1$
Sol.8)	We have, $\frac{dy}{dx} = \frac{2e^{-y}-1}{x+1}$
	Separating the variables
	$\Rightarrow \frac{dy}{2e^{-y}-1} = \frac{dx}{x+1}$
	Interpreting both sides
	$\int \frac{dy}{2e^{-y}-1} = \int \frac{dx}{x+1}$
	20 1 111
	$\Rightarrow \int \frac{e^{y}}{2 - e^{y}} = \int \frac{dx}{x + 1}$
	$Put 2 - e^y = t$
	$-e^{y}dy = dt$
	$e^{y}dy = -dt$
	$\Rightarrow -\log 2 - e^{y} = \log x + 1 + \log c$
	$\Rightarrow \log \left \frac{1}{2 - e^{y}} \right = \log c(x + 1) $
	$\Rightarrow \left \frac{1}{2 - e^{y}} \right = c(x + 1) $
	Put $x = 0 \& y = 0$
	$\Rightarrow \left \frac{1}{2-1} \right = c(0+1) \Rightarrow c = 1$
	$\Rightarrow \left \frac{1}{2 - e^{y}} \right = x + 1 $
	$\Rightarrow (x+1)(2-e^y) = 1$
	$\Rightarrow (x+1)(2-e^y) = \pm 1$
	But $x = 0$, $y = 0$ does not satisfy the solution
	$(x+1)(2-e^y) = -1$
	$\therefore (x+1)(2-e^y)=1$
	$\Rightarrow -\int \frac{dt}{t} = \log x+1 $
	$\Rightarrow 2 - e^y = \frac{1}{x+1}$
	$\Rightarrow e^{y} = \frac{2-1}{r+1}$
	$\Rightarrow 2 - e^{y} = \frac{1}{x+1}$ $\Rightarrow e^{y} = \frac{2-1}{x+1}$ $\Rightarrow e^{y} = \frac{2x+1}{x+1}$
	$\Rightarrow y = \log\left(\frac{2x+1}{x+1}\right)$ is the required solution ans.
Q.9)	Solve the D.E. $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$
Sol.9)	We have, $y - x \frac{dy}{dx} = ay^2 + a \frac{dy}{dx}$
	$\Rightarrow \frac{dy}{dx}(a+x) = y - ay^2$
	$\Rightarrow \frac{dy}{dx} = \frac{-ay^2 - y}{a + x}$
	Separating variable & interpreting both sides
	$\int \frac{dy}{ay^2 - y} = -\int \frac{dx}{a + x}$
	1
	$\Rightarrow \frac{1}{a} \int \frac{1}{y^2 - \frac{y}{a}} dy = -\log x + a $

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.