

	Class 12 Linear Differential Equation
	Class 12 th
Q.1)	Solve the DE $(x + y) \frac{dy}{dx} = 1$.
Sol.1)	$\frac{dy}{dx} = \frac{1}{x+y}$ $\Rightarrow \frac{dy}{dx} = x + y$ $\Rightarrow \frac{dx}{dy} - x = y$ Comparing with $\frac{dx}{dy} + Px = \theta$ Here $P = -1 \& \theta = y$ $I.F. = e^{-\int 1 dy} = e^{-y}$ Solution is given by $x. (I.F.) = \int \theta (I.F.) dy + c$ $\Rightarrow x. e^{-y} = \int y. e^{-y} + c$ $\Rightarrow x. e^{-y} = y \frac{e^{-y}}{-1} - \int 1. \frac{e^{-y}}{-1} dy + c$ $\Rightarrow x. e^{-y} = -ye^{-y} + \int e^{-y} dy + c$ $\Rightarrow x. e^{-y} = -ye^{-y} - e^{-y} + c$ $\Rightarrow xe^{-y} = -e^{-y}(y+1) + c$
Q.2)	$\Rightarrow x = -(y+1) + ce^y \qquad \text{ans.}$ Solve the D.E. $x \frac{dy}{dx} - y = (x+1)e^{-x}$; $y(1) = 0$
Sol.2)	Divide by x
301.2)	Solution is given by $y. (I.F.) = \int \frac{dy}{x} = \frac{x+1}{x}e^{-x}$ Comparing with $\frac{dy}{dx} + Py = \theta$ Here $P = -\frac{1}{x}$ and $\theta = \frac{x+1}{x} \cdot e^{-x}$ $I.F. = e^{\int \frac{1}{x}dx} = e^{-\log x} = e^{\log x^{-1}} = \frac{1}{x}$ Solution is given by $y. (I.F.) = \int \theta \cdot (I.F.)dx + c$ $\Rightarrow y. \frac{1}{x} = \int \frac{x+1}{x}e^{-x} \cdot \frac{1}{x}dx + c$ $\Rightarrow \frac{y}{x} = \int \left(\frac{1}{x} + \frac{1}{x^2}\right)e^{-x}dx + c$ $\Rightarrow \frac{y}{x} = \int e^{-x} \cdot \frac{1}{x}dx + \int e^{-x} \cdot \frac{1}{x^2}dx + c$ $\Rightarrow \frac{y}{x} = \frac{1}{x} \cdot \frac{e^{-x}}{(-1)} - \frac{1}{x^2} \cdot \frac{e^{-x}}{(-1)}dx + \int e^{-x} \cdot \frac{1}{x^2}dx + c$ $\Rightarrow \frac{y}{x} = -\frac{1}{x}e^{-x} - \int \frac{1}{x^2}e^{-x}dx + \int \frac{1}{x^2}e^{-x}dx + c$ $\Rightarrow \frac{y}{x} = -\frac{1}{x}e^{-x} + c$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	Put x = 1 and y = 0
	$\Rightarrow 0 = -e^{-1} + c \Rightarrow c = \frac{1}{e}$
	$\therefore \frac{y}{x} = -\frac{1}{x}e^{-x} + \frac{1}{e}$
	$\Rightarrow y = -e^{-x} + xe^{-1}$ is the required solution ans.
Q.3)	Show that the D.E. is homogeneous D.E. & also find the particular solution.
	(x + y)dy + (x - y)dx = 0; y = 1 when x = 1
Sol.3)	We have , $(x + y)dy + (x - y)dx = 0$
	$\Rightarrow \frac{dy}{dx} = \frac{-(x-y)}{x+y} = \frac{y-x}{x+y} \dots \dots (i)$
	Here $f(x,y) = \frac{y-x}{x+y}$
	$f(\lambda x. \lambda y) = \frac{\lambda y - \lambda x}{\lambda x + \lambda y}$
	$f(\lambda x, \lambda y) = \frac{\lambda(y-x)}{\lambda(x+y)}$
	$f(\lambda x, \lambda y) = \lambda^0 f(x, y)$
	Clearly function is homogeneous function of degree 0
	∴ D.E. is a homogeneous D.E.
	Put y = vx
	Diff. w.r.t. $x, \frac{dy}{dx} = v + \frac{xdv}{dx}$
	∴ equation (i) becomes
	$v + \frac{xdv}{dx} = \frac{vx - x}{x + vx}$
	$\Rightarrow v + \frac{xdv}{dx} = \frac{v-1}{1+v}$
	$\Rightarrow \frac{xdv}{dx} = \frac{v-1}{1+v} - v$
	$\Rightarrow \frac{xdv}{dx} = \frac{v - 1 - v - v^2}{1 + v}$ $\Rightarrow \frac{xdv}{dx} = \frac{-(v^2 + 1)}{1 + v}$
	$\begin{array}{ccc} ax & 1+v \\ xdv & -(v^2+1) \end{array}$
	$\Rightarrow \frac{1}{dx} = \frac{1+v}{1+v}$
	$\Rightarrow \frac{1+v}{v^2+1} dv = -\frac{dx}{x} \dots $ (separately variables)
	Interpreting both sides
	$\Rightarrow \int \frac{1+v}{1+v^2} dv = -\int \frac{dx}{x}$
	Separate:
	$\Rightarrow \int \frac{1}{1+v^2} dv + \int \frac{v}{1+v^2} dv = -\log x $
	Put $1 + v^2 = t$; $vdv = \frac{dt}{2}$
	$\Rightarrow \tan^{-1} v + \frac{1}{2} \int \frac{dt}{t} = -\log x $
	$\Rightarrow \tan^{-1} v + \frac{1}{2} \log v^2 + 1 = -\log x + c$
	$\Rightarrow 2 \tan^{-1} v + \log v^2 + 1 = -2 \log x + 2c$
	$\Rightarrow 2 \tan^{-1} v + \log v^2 + 1 + \log x ^2 = 2c$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	Replace v by $\frac{y}{x}$
	$\Rightarrow 2 \tan^{-1} \left(\frac{y}{x} \right) + \log \left \left(\frac{y^2}{x^2} + 1 \right) \cdot x^2 \right = 2c$
	$\Rightarrow 2 \tan^{-1} \left(\frac{y}{x} \right) + \log x^2 + y^2 = 2c$
	Put $x = 1$ and $y = 1$
	$\Rightarrow 2 \tan^{-1}(1) + \log(2) = 2c$
	$\Rightarrow 2\left(\frac{\pi}{4}\right) + \log(2) = 2c$
	$\Rightarrow 2c = \frac{\pi}{2} + \log 2$
	Solution is given by
	$\therefore 2 \tan^{-1} \left(\frac{y}{x} \right) + \log x^2 + y^2 = \frac{\pi}{2} + \log 2 $ ans.
Q.4)	Show that D.E. is homogeneous & also find the initial value problem
	$(x^2 + xy)dy = (x^2 + y^2)dx$ given $y(1) = 0$
Sol.4)	We have, $\frac{dy}{dx} = \frac{x^2 + y^2}{x^2 + xy}$ (i)
	Here $f(x,y) = \frac{x^2 + y^2}{x^2 + xy}$
	$f(\lambda x. \lambda y) = \frac{\lambda^2 x^2 + \lambda^2 y^2}{\lambda^2 x^2 + \lambda^2 x y}$
	$ff(\lambda x, \lambda y) = \lambda^0. f(x., y)$
	Clearly function is homogeneous of degree 0
	∴ D.E. is homogeneous D.E.
	Now put $y = vx$
	Diff. w.r.t x , $\frac{dy}{dx} = v + x \frac{dv}{dx}$
	∴ equation (i) becomes
	$v + \frac{xdv}{dx} = \frac{x^2 + v^2 x^2}{x^2 + v x^2}$ $\Rightarrow v + \frac{xdv}{dx} = \frac{1 + v^2}{1 + v}$ $\Rightarrow \frac{xdv}{dx} = \frac{1 + v^2}{1 + v} - v$
	$\Rightarrow v + \frac{xdv}{dx} = \frac{1+v^2}{1+v}$
	$\Rightarrow \frac{xdv}{dv} = \frac{1+v^2}{1+v^2} - v$
	$\Rightarrow \frac{xdv}{dx} = \frac{1+v^2}{1+v}$
	$\Rightarrow \frac{xdv}{dx} = \frac{1-v}{1+v}$
	$\Rightarrow \frac{xdv}{dx} = \frac{-(v-1)}{v+1}$
	$\Rightarrow \frac{v+1}{v-1} dv = \frac{-dx}{x} \dots $ (separately variables)
	Interpreting both sides
	$\int \frac{v+1}{v-1} dx = -\int \frac{dx}{x}$
	Adjustment
	$\int \frac{v+1-1+1}{v-1} dx = -\log x $

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

$$\Rightarrow \int \frac{(v-1)+2}{v-1} dv = -\log|x|$$

$$\Rightarrow \int 1 + \frac{2}{v-1} dv = -\log|x|$$

$$\Rightarrow v + 2 \log|v - 1| = -\log|x| + c$$
Replace v by $\frac{v}{x}$

$$\Rightarrow \frac{v}{x} + 2 \log\left|\frac{v}{x} - 1\right| + \log|x| + c$$

$$\Rightarrow \frac{v}{x} + \log\left|\frac{(v-x)^2}{x}\right| = c$$
Put $x = 1$ & $y = 0$

$$\Rightarrow 0 + \log|1| = c \Rightarrow c = 0$$

$$\therefore \frac{v}{x} + \log\left|\frac{(v-x)^2}{x}\right| = 0$$

$$\Rightarrow \log\left|\frac{(v-x)^2}{|x|} = -\frac{v}{x}\right|$$

$$\Rightarrow (x - y)^2 = |x| e^{-\frac{v}{x}} \text{ is the required solution} \quad \text{ans.}$$
Q.5) Find the general solution: $(x^3 - 3xy^2)dx = (y^3 - 3x^2y)dy$
Sol.5)
$$\frac{dy}{dx} = \frac{v^2 - 3xy^2}{y^2 - 3x^2y}$$
Clearly the degree of each term in nominator & denominator is same. It is a homogeneous D.E.

Put $y = vx$
Diff. w.r.t x ;
$$\frac{dy}{dx} = v + \frac{xdv}{dx}$$

$$\therefore \text{ equation (i) becomes}$$

$$v + \frac{xdv}{dx} = \frac{v^3 - 3v^2x^2}{v^3 - 3y^2}$$

$$\Rightarrow v + \frac{xdv}{dx} = \frac{1 - 3v^2}{v^3 - 3y^2}$$

$$\Rightarrow \frac{xdv}{dx} = \frac{1 - 3v^2}{v^3 - 3y}$$

$$\Rightarrow \frac{xdv}{dx} = \frac{1 - 3v^2}{v^3 - 3y}$$

$$\Rightarrow \frac{xdv}{v^3 - 3v} = \frac{1 - 3v^2}{v^3 - 3v}$$
Interpreting both sides
$$\int \frac{v^3 - 3v}{v^2 - 1} dv = -\int \frac{dx}{x}$$
Separate
$$\int \frac{v^3}{v^2 - 1} dv - 3\int \frac{v}{v^4 - 1} dv = -\log|x|$$
Put $v^4 - 1 = t$
Put $v^2 = z$ in 2^{rd} integral
$$v^3 dv = \frac{dt}{4} \qquad vdv = \frac{dz}{2}$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

$$\begin{vmatrix} \Rightarrow (v+1)dv = \frac{dt}{4} \\ \therefore \frac{1}{4} \int \frac{dt}{t} = -\int \frac{dx}{x} \\ \frac{1}{4} \log 2v^2 + 4v = -\log x + \log c \\ \Rightarrow \log 2v^2 + 4v = -4 \log x + 4 \log c \\ \text{Replace } v \text{ by } \frac{v}{x} \\ \Rightarrow \log \frac{2v^2 + 4v}{x^2} = \log \frac{e^4}{x^4} \\ \Rightarrow \log \frac{2v^2 + 4xy}{x^2} = \frac{e^4}{x^4} \\ \Rightarrow \log \frac{2v^2 + 4xy}{x^2} = \frac{e^4}{x^4} \\ \Rightarrow |4xy + 2y^2| = \frac{e^4}{x^2} \text{ ans.}$$

$$\boxed{0.7} \quad \text{Find one parameter solution of the D.E.} \\ x \cos \left(\frac{v}{x}\right) \cdot (ydx + x \, dy) = y \sin \left(\frac{v}{x}\right) \cdot (x \, dy - ydx)$$

$$\boxed{501.7} \quad x \, y \cos \left(\frac{v}{x}\right) dx + x^2 \cos \left(\frac{v}{x}\right) dy = xy \sin \left(\frac{v}{x}\right) dy - y^2 \sin \left(\frac{v}{x}\right) \\ \Rightarrow dy \left(x^2 \cos \left(\frac{v}{x}\right) - xy \sin \left(\frac{x}{x}\right)\right) = -dx \left(y^2 \sin \left(\frac{v}{x}\right) + xy \cos \left(\frac{v}{x}\right)\right) \\ \frac{dy}{dx} = \frac{-(y^2 \sin \left(\frac{v}{x}\right) + xy \cos \left(\frac{v}{x}\right)}{x^2 \cos \left(\frac{v}{x}\right) - xy \sin \left(\frac{x}{x}\right)} \qquad(i) \\ \text{It is a homogeneous D.E.} \\ \text{Put } y = vx \\ \text{Diff. w.r.t. } x \cdot \frac{dy}{dx} = v + \frac{xdv}{dy} \text{ put in eq. (i)} \\ \Rightarrow v + \frac{xdv}{dx} = \frac{-v^2 \sin v + v \cos v}{x^2 \cos v - \sin v} \\ \Rightarrow v + \frac{xdv}{dx} = \frac{-v^2 \sin v + v \cos v}{\cos v - \sin v} \\ \Rightarrow \frac{xdv}{dx} = \frac{-v^2 \sin v + v \cos v}{\cos v - \sin v} \\ \Rightarrow \frac{xdv}{dx} = \frac{-v^2 \sin v + v \cos v}{\cos v - \sin v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v \cos v}{v \cos v} \\ \Rightarrow \frac{xdv}{v \cos v} = \frac{-2v$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\Rightarrow \log \frac{\left(\frac{y}{x}\right)}{\sec\left(\frac{y}{x}\right)} \cdot x^2 = \log c$
	$\Rightarrow \log \frac{xy}{\sec(\frac{y}{x})} = \log c$
	$\Rightarrow \frac{xy}{\sec(\frac{y}{x})} = \pm c$
	$\Rightarrow xy = c^1 \sec\left(\frac{y}{x}\right)$; where $c^1 = \pm c$ is the required solution ans.
Q.8)	Find the particular solution of the D.E.
	$x\cos\left(\frac{y}{x}\right)\frac{dy}{dx} = \frac{x+y\cos\left(\frac{y}{x}\right)}{x\cos\left(\frac{y}{x}\right)}$
Sol.8)	It is a homogeneous D.E.
	Put y = vx
	Diff. w.r.t x , $\frac{dy}{dx} = v + \frac{xdv}{dx}$
	$\Rightarrow v + \frac{xdv}{dt} = \frac{1 + v\cos v}{1 + v\cos v}$
	$\Rightarrow \frac{xdv}{dx} = \frac{1 + v \cos v}{\cos v} - v$
	$\begin{array}{cccc} dx & \cos v \\ xdv & 1+v\cos v-v\cos v \end{array}$
	$\Rightarrow \frac{xdv}{dx} = \frac{1 + v\cos v - v\cos v}{\cos v}$
	$\Rightarrow \frac{xdv}{dx} = \frac{1}{\cos v}$
	$\Rightarrow \cos v \ dv = \frac{dx}{x}$
	Interpreting both sides
	$\int \cos v \ dv = \frac{dx}{x}$
	$\Rightarrow \sin v = \log x + c$
	Replace v by $\frac{v}{x}$
	$\therefore \sin\left(\frac{y}{x}\right) = \log x + c$
	Put $x = 1$ and $y = \frac{r}{4}$
	$\Rightarrow \sin\left(\frac{r}{4}\right) = \log 1 + c$
	$\Rightarrow \frac{1}{\sqrt{2}} = c$
Q.9)	Show that D.E. is homogeneous & solve it $2ye^{\frac{x}{y}}dx + \left(y - 2xe^{\frac{x}{y}}\right)dy = 0$
Sol.9)	We have, $2ye^{\frac{x}{y}}dx = -\left(y - 2xe^{\frac{x}{y}}\right)dy = 0$
	$\Rightarrow \frac{dx}{dy} = \frac{2ye^{\frac{x}{y}} - y}{2ye^{\frac{x}{y}}} \dots \dots \dots \dots (i)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Here
$$f(x,y) = \frac{2v x^2 - y}{2y e^y}$$
 $f(\lambda x, \lambda y) = \frac{2\lambda x x^2 - \lambda y}{2\lambda y e^y}$
 $= \frac{\lambda}{\lambda} \left(\frac{2x x^2 - y}{2y e^y} \right)$
 $f(\lambda x, \lambda y) = \frac{2\lambda x x^2 - \lambda y}{2y e^y}$
 $= \frac{\lambda}{\lambda} \left(\frac{2x x^2 - y}{2y e^y} \right)$
 $f(\lambda x, \lambda y) = \frac{\lambda}{2} f(x, y)$

Clearly function is homogeneous D.E.

Put $x = vy$

Diff. w.r.t. $v, \frac{dx}{dy} = v + y \frac{dv}{dy}$
 \therefore equation (i) become

 $v + y \frac{dy}{dy} = \frac{2v y e^x - y}{2y e^y}$
 $\Rightarrow v + y \frac{dy}{dy} = \frac{2v y e^y - y}{2e^y}$
 $\Rightarrow v + y \frac{dy}{dy} = \frac{2v y e^y - y}{2e^y}$
 $\Rightarrow y \frac{dv}{dy} = \frac{2v^2 v^2 - 1}{2e^y}$
 $\Rightarrow y \frac{dv}{dy} = \frac{2v^2 v^2 - 1 - 2v^2}{2e^y}$
 $\Rightarrow y \frac{dv}{dy} = \frac{2v e^y - 1 - 2y^2}{2e^y}$
 $\Rightarrow e^y dv = -\frac{1}{2} \frac{1}{y}$

Interpreting both sides

 $\int e^y dv = -\frac{1}{2} \int \frac{dy}{y}$
 $\Rightarrow e^y = -\frac{1}{2} \log |y| + c$

Replace v by $\frac{x}{y}$
 $\Rightarrow e^y = -\frac{1}{2} \log |y| + c$

Replace v by $\frac{x}{y}$
 $\Rightarrow e^y = -\frac{1}{2} \log |y| + c$

is the required solution ans.

Q.10)

Solve the D.E.

 $x^2 x - y \sin(\frac{x}{x}) + x \frac{dy}{dx} \sin(\frac{y}{x}) + x \frac{dy}{dx} \sin(\frac{y}{x}) = 0$
 $\Rightarrow \frac{dy}{dy} = \frac{y \sin(\frac{x}{x}) - x x^2}{x \sin(\frac{x}{x})} \dots (i)$

It is homogeneous D.E.

Put $y = vx$

Diff. w.r.t. $x \frac{dy}{dx} = v + x \frac{dv}{dx}$ Put in eq. (i)

 $v + \frac{x dv}{dx} = \frac{v \sin v - x e^x}{x \sin v}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

$$\Rightarrow v + \frac{xdv}{dx} = \frac{v \sin v - e^v}{\sin v}$$

$$\Rightarrow \frac{xdv}{dx} = \frac{v \sin v - e^v - v \sin v}{\sin v}$$

$$\Rightarrow \frac{xdv}{dx} = \frac{v \sin v - e^v - v \sin v}{\sin v}$$

$$\Rightarrow \frac{xdv}{dx} = \frac{-e^v}{\sin v}$$

$$\Rightarrow \frac{\sin v}{e^v} dv = \frac{-dx}{x}$$

$$\Rightarrow \int_e^{-v} \sin v dv = -\int_x^{dx} - \frac{dx}{x} - \frac{dx}{x}$$

$$\Rightarrow \int_e^{-v} \sin v dv = -\int_x^{dx} - \frac{dx}{x} - \frac{dx}{x} - \frac{dx}{x}$$

$$= \int_e^{-v} \sin v dv - \int_x^{dx} - \frac{dx}{x} - \frac{dx}{x} - \frac{dx}{x}$$

$$I = \int_e^{-v} \sin v + \int_e^{-v} \cos v dv$$

$$I = -e^{-v} \sin v + \cos v - \frac{e^{-v}}{-1} - \sin v - \frac{e^{-v}}{-1} dv$$

$$I = -e^{-v} \sin v + \cos v - \frac{e^{-v}}{-1} - \sin v - \frac{e^{-v}}{-1} dv$$

$$I = -e^{-v} \sin v + \cos v - e^{-v} - I$$

$$2I = -e^{-v} (\sin v + \cos v)$$

$$I = -\frac{e^{-v}}{2} (\sin v + \cos v)$$

$$\therefore \text{ equation (ii) becomes}$$

$$\frac{-e^{-v}}{2} (\sin v + \cos v) = -\log|x| + c$$

$$\Rightarrow e^{-v} (\sin v + \cos v) = 2\log|x| - 2c$$

$$\text{Replace } v \text{ by } \frac{y}{x}$$

$$\Rightarrow e^{-\frac{y}{x}} (\sin \frac{y}{x} + \cos \frac{y}{x}) = \log|x^2| - 2c$$

$$\text{Put } x = 1 \text{ and } y = 0$$

$$\Rightarrow e^0 (\sin + \cos 0) = \log|1| - 2c$$

$$\Rightarrow 1 = -2c \Rightarrow c = -\frac{1}{2}$$

$$\therefore e^{-\frac{y}{x}} (\sin \frac{y}{x} + \cos \frac{y}{x}) = \log|x^2| + 1 \text{ is the required particular solution} \quad \text{ans.}$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.