

Class XII

Class 12 Linear Differential Equation

0.1\	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$,
Q.1)	Solve the D.E : $x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x$.
Sol.1)	Divide by $x \log x$
	$\left \frac{dy}{dx} + \frac{1}{x \log x} y \right = \frac{2}{x^2}$
	Comparing with $\frac{dy}{dx} + Py = \theta$
	We have, $P = \frac{1}{x \log x} \& \theta = \frac{2}{x^2}$
	$I.F. = e^{\int Pdx} = e^{\int \frac{1}{x \log x} dx}$
	Put $\log x = t \Rightarrow \frac{1}{x} dx = dt$
	$\therefore I.F = e^{\int \frac{dt}{t}} = e^{\int \log t} = t = \log x$
	$\therefore I.F. = \log x$
	Solution is given by
	$y.(I.F.) = \int \theta.(I.F.)dx + C$
	$\Rightarrow y.\log x = 2 \int \frac{1}{x^2} .\log x dx + C$
	$\Rightarrow y \log x = 2 \left[\log x \left(\frac{-1}{x} \right) - \int \frac{1}{x} \left(\frac{-1}{x} \right) dx \right] + C$
	$\Rightarrow y \log x = 2 \left[\frac{-\log x}{x} + \int \frac{1}{x^2} dx \right] + C$
	$\Rightarrow y \log x = 2 \left[\frac{-\log x}{x} - \frac{1}{x} \right] + C$
	$\Rightarrow y \log x = \frac{-2}{x} (\log x + 1) + C$ is the required solution.
Q.2)	Solve the D.E. : $x \frac{dy}{dx} + y - x + xy \cot x = 0$.
Sol.2)	We have, $x \frac{dy}{dx} + y(1 + x \cot x) = x$
	Divide by x
	$\Rightarrow \frac{dy}{dx} + y\left(\frac{1}{x} + \cot x\right) = 1$
	Comparing with $\frac{dy}{dx} + Py = \theta$
	We have, $P = \frac{1}{x} + \cot x$ and $\theta = 1$
	$I.F. = e^{\int \frac{1}{x} + \cot x dx} = e^{\log x \log(\sin x)}$
	$=e^{\log(x\sin x)}=x\sin x$
	$\therefore I.F. = x \sin x$
	Solution is given by
	$\Rightarrow y(I.F.) = \int \theta(I.F.)dx + C$
	$\Rightarrow y(x\sin x) = \int 1.(x\sin x)dx + C$
	$\Rightarrow y(x\sin x) = x(-\cos x) - \int (1) \cdot (-\cos x) dx + C$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\Rightarrow y(x \sin x) = -x \cos x + \sin x + C$ ans.
Q.3)	Solve the initial value problem
Δ,	$(x^2 + 1)y' - 2xy = (x^4 + 2x^2 + 1)\cos x; y(0) = 0.$
Sol.3)	We have, $(x^2 + 1)\frac{dy}{dx} - 2xy = (x^2 + 1)^2 \cdot \cos x$
	Divide by $x^2 + 1$
	$\Rightarrow \frac{dy}{dx} - \frac{2x}{1+x^2}y = (x^2 + 1) \cdot \cos x$
	Comparing with $\frac{dy}{dx} + Py = \theta$
	We have, $P = \frac{-2x}{x^2+1}$ and $\theta = (x^2 + 1)\cos x$
	$I.F. = e^{\int P dx} = e^{-\int \frac{2x}{1+x^2} dx}$
	$Put 1 + x^2 = t$
	$\Rightarrow 2xdx = dt$
	$\therefore I.F. = e^{-\int \frac{dt}{t}} = e^{-\log t} = e^{\log(t)^{-1}}$
	$I.F. = \frac{1}{t} = \frac{1}{1+x^2}$
	$\therefore I.F. = \frac{1}{1+x^2}$
	Now solution is given by $y(I.F.) = \int \theta . (I.F.) dx + C$
	$\Rightarrow y \times \frac{1}{x^2 + 1} = \int (x^2 + 1) \cdot \cos x \cdot \frac{1}{1 + x^2} dx + C$
	$\Rightarrow \frac{y}{x^2 + 1} = \sin x + C$
	Initial condition $y(0) = 0 \Rightarrow x = 0$ and $y = 0$
	$\Rightarrow 0 = \sin(0) = C$
	$\Rightarrow C = 0$
	$ \therefore \frac{y}{x^2 + 1} = \sin x $
	$\Rightarrow y = (x^2 + 1) \sin x$ is the required particular solution.
Q.4)	Solve the D.E. $\frac{dy}{dx} = \frac{-x + y \cos x}{1 + \sin x}$.
Sol.4)	We have, $\frac{dy}{dx} = \frac{-x + y \cos x}{1 + \sin x}$ $\Rightarrow \frac{dy}{dx} = \frac{-x}{1 + \sin x} - \frac{y \cos x}{1 + \sin x}$
	dx
	$\Rightarrow \frac{dx}{dx} = \frac{1+\sin x}{1+\sin x}$
	$\Rightarrow \frac{dy}{dx} + \frac{y \cos x}{1 + \sin x} = \frac{-x}{1 + \sin x}$
	Comparing with $\frac{dy}{dx} + Py = \theta$
	We have, $P = \frac{\cos x}{1+\sin x}$ and $\theta = \frac{-xy}{1+\sin x}$
	$I.F. = e^{\int \frac{\cos x}{1 + \sin x}}$
	$Put 1 + \sin x = t \Rightarrow \cos x dx = dt$
	$\therefore I.F. = e^{\int \frac{dt}{t}} = e^{\log t} = t = 1 + \sin x$
	$\therefore I.F. = 1 + \sin x$
	Solution is given by $y(I.F.) = \int \theta . (I.F.) dx + C$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

r	
	$\Rightarrow y(1+\sin x) = \int \frac{-x}{(1+\sin x)} \times (1+\sin x) dx + C$
	$\Rightarrow y(1 + \sin x) = \frac{(-x)^2}{2} + C$ is the required solution.
Q.5)	Find the general solution $\frac{dy}{dx} - 2y = \cos(3x)$
Sol.5)	Comparing with $\frac{dy}{dx} + Py = \theta$
	We have, $P = -2$ and $\theta = \cos(3x)$
	$I.F. = e^{\int -2dx}$
	$I.F. = e^{-2x}$
	Solution is given by $y(I.F.) = \int \theta (I.F.) dx + C$
	$y \cdot e^{-2x} = \int e^{-2x} \cos(3x) dx + C$
	$\Rightarrow y. e^{-2x} = I + C$ (i)
	Where $I = \int e^{-2x} \cos(3x) dx$
	$I = \cos(3x) \cdot \frac{e^{-2x}}{-2} - \int -3\sin(3x) \cdot \frac{e^{-2x}}{-2} dx$
	$I = \frac{-1}{2}\cos(3x) \cdot e^{-2x} - \frac{3}{2}\int e^{-2x} \cdot \sin(3x) dx$
	$= -\frac{1}{2} \cdot \cos(3x) e^{-2x} - \frac{3}{2} \left[\sin(3x) \cdot \frac{e^{-2x}}{-2} - \int 3\cos(3x) \cdot \frac{e^{-2x}}{-2} dx \right]$
	$= -\frac{1}{2}\cos(3x) e^{-2x} - \frac{3}{2} \left[-\frac{1}{2}\sin(3x) e^{-2x} + \frac{3}{2} I \right]$
	$I = -\frac{1}{2} \cdot e^{-2x} \cdot \cos(3x) + \frac{3}{4} e^{-2x} \cdot \sin(3x) - \frac{9}{4}I$
	$\Rightarrow I + \frac{9}{4}I = \frac{e^{-2x}}{4}(-2\cos(3x) + 3\sin(3x))$
	$\Rightarrow 13I = e^{-2x}(-2\cos(3x) + 3\sin(3x))$
	$\Rightarrow I = \frac{e^{-2x}}{13}(-2\cos(3x) + 3\sin(3x))$
	∴ equation (i) become
	$y \cdot e^{-2x} = \frac{e^{-2x}}{13} (-2\cos(3x) + 3\sin(3x)) + C$
	$\Rightarrow y = \frac{1}{13}(-2\cos(3x) + 3\sin(3x)) + Ce^{2x} \text{ans.}$
Q.6)	Solve the D.E. $\cos^2 x \frac{dy}{dx} + y = \tan x$
Sol.6)	Divide by $\cos^2 x$
	$\Rightarrow \frac{dy}{dx} + y \sec^2 x = \tan x \cdot \sec^2 x$
	Here $P = \sec^2 x$ and $\theta = \tan x \sec^2 x$
	$I.F. = e^{\int Pdx} = e^{\int \sec^2 x dx} = e^{\tan x}$
	$\therefore I.F. = e^{\tan x}$
	Solving is giving by
	$y.(I.F.) = \int \theta (I.F.) dx + C$
	$\Rightarrow y. e^{\tan x} = \int \tan x. \sec^2 x. e^{\tan x} dx + C$
	Put $\tan x = t$
	$\Rightarrow \sec^2 x \ dx = dt$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	tany C t . I a
	$y \cdot e^{\tan x} = \int e^t \cdot t dt + C$
	$\Rightarrow ye^{\tan x} = t \cdot e^t - \int e^t dt + C$
	$\Rightarrow ye^{\tan x} = te^t - e^t + C$
0.7)	$\Rightarrow ye^{\tan x} = e^{\tan x}(\tan x - 1) + C \qquad \text{ans.}$
Q.7)	Solve the D.E. $(x^2 + 1)\frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$
Sol.7)	Divide by $(x^2 + 1)$
	$\frac{dy}{dx} + \frac{2x}{x^2 + 1}y = \frac{\sqrt{x^2 + 4}}{x^2 + 1}$
	Comparing with $\frac{dy}{dx} + Py = \theta$
	We have, $P = \frac{2x}{x^2 + 1}$ and $\theta = \frac{\sqrt{x^2 + 4}}{x^2 + 1}$
	$I.F. = e^{\int Pdx} = e^{\int \left(\frac{2x}{x^2 + 1}\right) dx}$
	$\operatorname{Put} x^2 + 1 = t \Rightarrow 2xdx = dt$
	$I.F. = e^{\int \frac{dt}{t}} = e^{\log t} = t = x^2 + 1$
	$\therefore I.F. = x^2 + 1$
	Solution is given by
	$y.(I.F.) = \int \theta (I.F.) dx + C$
	$\Rightarrow y. (x^2 + 1) = \int \frac{\sqrt{x^2 + 4}}{x^2 + 1}. (x^2 + 1) dx + C$
	$\Rightarrow y(x^2 + 1) = \frac{x}{2}\sqrt{x^2 + 4} + \frac{4}{2}\log x + \sqrt{x^2 + 4} + C$
	$\Rightarrow y(x^2 + 1) = \frac{x}{2}\sqrt{x^2 + 4} + 2\log x + \sqrt{x^2 + 4} + C$
Q.8)	Find the particular solution of the D.E. $\frac{dy}{dx} + y = \cos x - \sin x$. given $y(0) = 2$
Sol.8)	Comparing with $\frac{dy}{dx} + Py = \theta$
	Where $P = 1$ and $\theta = \cos x - \sin x$
	$I.F. = e^{\int Pdx} = e^{\int 1.dx} = e^x \Rightarrow I.F. = e^x$
	Solution is given by
	$y.(I.F.) = \int \theta (I.F.) dx + C$
	$\Rightarrow ye^x = f e^x \cdot (\cos x - \sin x) dx + C$
	$\Rightarrow ye^x = \int e^x \cdot \cos x dx - \int e^x \sin x dx + C$
	$\Rightarrow ye^x = \cos x \ e^x - f - \sin x. \ e^x - f \ e^x \sin x \ dx - f \ e^x \sin x \ dx + C$
	$\Rightarrow ye^x = e^x \cos x \to f e^x \sin x dx - f e^x \sin x dx + C$
	$ye^x = e^x \cos x + C$
	Put in Initial condition i.e., $x = 0$ and $y = 2$
	$\Rightarrow 2e^{\circ} = e^{\circ}.cos + C$
	$\Rightarrow 2 = C$
	$\therefore ye^x = e^x \cos x + 2$ $(ex) y = \cos x + 2e^x \text{ is the particular solution}$
0.0)	(or) $y = \cos x + 2e^x$ is the particular solution
Q.9)	Find the general solution of the

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\frac{dy}{dx} + x\sin(2y) = x^3\cos^2 y$
Sol.9)	We have $\frac{dy}{dx} + x \sin(2y) = x^3 \cos^2 y$
	Divide by cos^2y
	$\Rightarrow \sec^2 y \frac{dy}{dx} + x \sin(24) = x^3$
	$\Rightarrow \sec^2 y \frac{dy}{dx} + x. \frac{2\sin y \cos y}{\cos^2 y} = x^3$
	$\Rightarrow \sec^2 y \frac{dy}{dx} + 2x \tan y = x^3$
	Let $\tan y = V \Rightarrow sec^2 y \frac{dy}{dx} = \frac{dv}{dx}$
	$\therefore \frac{dv}{dx} + 2xv = x^3$
	This a linear D.E of the form $\frac{dv}{dx} + pv = Q$
	Here $p = 2x$ and
Q.10)	Find the particular solution of the D.E. $\frac{dy}{dx} + y = \cos x - \sin x$ given $y(0) = 2$.
Sol.10)	Compare with $\frac{dy}{dx} + Py = \theta$.
	We have, $P = 1$ and $\theta = \cos x - \sin x$
	$I.F. = e^{\int Pdx} = e^{\int 1dx} = e^x \Rightarrow I.F. = e^x$
	Solution is given by
	$y.(I.F.) = \int \theta (I.F.) dx + C$
	$\Rightarrow ye^x = \int e^x \cdot (\cos x \cdot \sin x) dx + C$
	$\Rightarrow ye^x = \int e^x \cos x \ dx - \int e^x \sin x \ dx + C$
	$\Rightarrow ye^x = \cos x e^x - \sin x dx + C$
	$\Rightarrow ye^x = \cos x + \int e^x \sin x dx - \int e^x \sin x dx + C$
	$\Rightarrow ye^x = e^x \cos x + C$
	Put initial condition i.e., $x = 0 \& y = 2$
	$\Rightarrow 2e^0 = e^0 \cdot \cos 0 + C$
	$\Rightarrow 2 = C$
	$\therefore ye^x = e^x \cdot \cos x + 2$
	Or $y = \cos x + 2e^{-x}$ is the particular solution ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.