CLASS XII DEFINITE INTEGRALS and APPLICATION Of INTEGRALS

USING PROPERTIES OF DEFINITE INTEGRALS EVALUATE

Q1. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{3} x$ dx.

Q2. $\int_{0}^{3}|x-1|+|x-2|+|x| d x$

Q3. $\int_{-3}^{3}|x+1| d x$.

Q4. $\int_{0}^{\pi / 4} \sqrt{1+\sin 2 x} \mathrm{dx}$.

Q5. $\int_{\pi / 6}^{\pi / 3} \frac{\sin x+\cos x d x}{\sqrt{\sin 2 x}}$.

Q6. $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$

Q7. Prove that: $\int_{0}^{1} \tan ^{-1}\left(\frac{1}{1-x+x^{2}}\right) \mathrm{dx} .=\frac{\pi}{2}-\log 2$
Q8. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\sin |x|-\cos |x|) \mathrm{dx}$.

Q9. $\int_{0}^{\pi} \frac{x \tan x d x}{\sec x \operatorname{cosec} x}$
Q.10. Using limit of sum evaluate

$$
\int_{a}^{b}\left(x+e^{x}+\cos x\right) d x
$$

AREA BETWEEN THE CUVES (USING INTEGRATION)

Q1.Find the area bounded by the curve $x^{2}=4 y$ and straight line $x=4 y-2$

Q2. Draw the rough sketch of following and find the area of the region enclosed
(a) $\left\{\mathrm{x}^{2} \leq y \leq|x|\right\}$ and
(b) $\left\{(\mathrm{x}, \mathrm{y}):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}$.

Q3. Find the area of the circle : $x^{2}+y^{2}=4$ which is exterior to the parabola $y^{2}=4 x$.

Q4.Find the area enclosed between the circles: $x^{2}+y^{2}=4, x^{2}+(y-2)^{2}=4$.

Q5. Find the area enclosed between the parabolas: $x^{2}=4 x, y^{2}=x$.

Q6.Find the area of the triangle formed by the points $(2,2),(4,1)$, and $(5,2)$.

Q7.Find the area of the parabola: $y^{2}=4 a^{2}(x-3)$ above x-axis under the constraints $x=3, y=4 a$.

