

DEFINITE INTEGRALS

$$\begin{array}{lll} \boxed{\text{O.1}} & I = \int_{3}^{4} e^{3x} + 2x \, dx \\ \hline \text{Sol.1}) & a = 3, b = 4, nh = 4 - 3 = 1 \\ & I = \lim_{h \to 0} h[f(3) + f(3+h) + f(3+2h) + \dots \cdot f(3+(n-1)h)] \\ & = \lim_{h \to 0} h[(e^{9} + 6) + (e^{9+3h} + 6 + 2h) + (e^{9+6h} + 6 + 4h) + \dots \cdot (e^{9+3(n-1)h} + 6 + 2(n-1)h)] \\ & = \lim_{h \to 0} h[\{e^{9} + e^{9+3h} + e^{9+6h} + \dots \cdot \cdot e^{9+3(n-1)h}\} + \{(6+6+6+\cdots \cdot \cdot \cdot n \, term) + (2h+4h+\dots \cdot \cdot 2(n-1)h)\}] \\ & = \lim_{h \to 0} h[e^{9} + e^{9+3h} + e^{9+6h} + \dots \cdot \cdot e^{9+3(n-1)h}] + \lim_{h \to 0} h[6n+2h(1+2+\dots \cdot \cdot (n-1)] \\ & = e^{9} \lim_{h \to 0} h[1 + e^{3h} + e^{6h} + \dots \cdot \cdot e^{3(n-1)h}] + \lim_{h \to 0} h[6n+2h(1+2+\dots \cdot \cdot (n-1)]] \\ & = e^{9} \lim_{h \to 0} h\left[1 \left(\frac{(e^{3h})^{n} - 2}{e^{3h-1}}\right)\right] + \lim_{h \to 0} [6nh + (nh)(nh-h)] \\ & = e^{9} \lim_{h \to 0} h\left[\frac{e^{3nh} - 1}{e^{3nh} - 1}\right] + \lim_{h \to 0} [6n + (nh)(nh-h)] \\ & = e^{9} \lim_{h \to 0} h\left[\frac{e^{3-1} - 1}{e^{3nh} - 1}\right] + \lim_{h \to 0} [6h + (nh)(nh-h)] \\ & = e^{9} \lim_{h \to 0} h\left[\frac{e^{3-1} - 1}{e^{3nh} - 1}\right] + \lim_{h \to 0} [6h + (nh)(nh-h)] \\ & = e^{9} \lim_{h \to 0} h\left[\frac{e^{3-1} - 1}{2^{3n} - 1}\right] + \lim_{h \to 0} [6h + (nh)(nh-h)] \\ & = e^{9} \lim_{h \to 0} h\left[\frac{e^{3-1} - 1}{2^{3n} - 1}\right] + \lim_{h \to 0} [6h + (nh)(nh-h)] \\ & = e^{9} \lim_{h \to 0} h\left[\frac{e^{3-1} - 1}{2^{3n} - 1}\right] + \lim_{h \to 0} [6h + (nh)(nh-h)] \\ & = e^{9} \lim_{h \to 0} h\left[\frac{e^{3-1} - 1}{2^{3} - 1}\right] + \lim_{h \to 0} [6h + (nh)(nh-h)] \\ & = \frac{e^{9} (e^{3-1} - 1)}{3} + 6 + 1 \\ & I = \frac{e^{9} (e^{3-1} - 1)}{3} + 3 + A \text{ Ass.....} \\ & \boxed{Q.2} \quad \text{Evaluate } \int_{\frac{\pi}{2}} e^{x} \left(\frac{1 - \sin x}{1 - \cos x}\right) dx \\ & I = \int_{\frac{\pi}{2}} e^{x} \left(\frac{1 - \sin x}{1 - \cos x}\right) dx \\ & I = \int_{\frac{\pi}{2}} e^{x} \left(\frac{1 - \sin x}{1 - \cos x}\right) dx \\ & I = \int_{\frac{\pi}{2}} e^{x} \left(\frac{1 - \cos x}{2}\right) dx \\ & I = \int_{\frac{\pi}{2}} e^{x} \cot\left(\frac{x}{2}\right) dx + \frac{1}{2} \int_{\frac{\pi}{2}} e^{x} \csc^{2}\left(\frac{x}{2}\right) dx \\ & I = -\left[\cot\frac{\pi}{2}, e^{x} - \cot\frac{\pi}{4}, e^{\frac{\pi}{2}}\right] - \frac{1}{2} \int_{\frac{\pi}{2}} e^{x} \csc^{2}\left(\frac{x}{2}\right) dx + \frac{1}{2} \int_{\frac{\pi}{2}} e^{x} \csc^{2}\left(\frac{x}{2}\right) dx \\ & I = -\left[0 - e^{\frac{\pi}{2}}\right] \quad \dots \dots \left\{ \cdot \cot\left(\frac{\pi}{2}\right) = 0, \cot\left(\frac{\pi}{4}\right) = 1 \right\} \end{aligned}$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Studies Toudy.com	
	$\therefore I = e^{\frac{\pi}{2}} \qquad Ans \dots$
Q.3)	$I = \int_0^{\frac{\pi}{2}} \sin(2x) \cdot \tan^{-1}(\sin x) dx$
Sol.3)	$I = 2\int_0^{\frac{\pi}{2}} \sin x \cdot \cos x \cdot \tan^{-1}(\sin x) dx$
	Put $\sin x = t$ when $x = 0$; $t = 0$
	$\cos x dx = dt$ when $x = \frac{\pi}{2}$; $t = 1$
	$\therefore I = 2 \int_0^1 t \cdot t a n^{-1}(t) dt$
	$= 2\left[\left(tan^{-1}t.\frac{t^2}{2}\right)_0^1 - \int_0^1 \frac{1}{1+t^2}.\frac{t^2}{2} dt\right]$
	$= 2\left[\left(\frac{\pi}{4}, \frac{1}{2}\right) - 0 - \frac{1}{2} \int_0^1 \frac{t^2}{1 + t^2} dt\right]$
	$= 2\left[\frac{\pi}{8} - \frac{1}{2} \int_0^1 \frac{1+t^2-1}{1+t^2} dt\right]$
	$= \frac{\pi}{4} - \int_0^1 1 - \frac{1}{1+t^2} dt$
	$= \frac{\pi}{4} - [t - tan^{-1}t]_0^1$
	$=\frac{\pi}{4}-\left[\left(1-\frac{\pi}{4}\right)-0\right]$
	$I = \frac{\pi}{2} - 1$ Ans
Q.4)	$I = \int_0^{\frac{\pi}{2}} \frac{x + \sin x}{1 + \cos x} dx$
Sol.4)	$I = \int_0^{\frac{\pi}{2}} \frac{x + 2\sin\left(\frac{x}{2}\right) \cdot \cos\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)} dx$
	$I = \int_0^{\frac{\pi}{2}} \frac{x}{2\cos^2(x/2)} + \frac{2\sin(\frac{x}{2}) \cdot \cos(\frac{x}{2})}{2\cos^2(\frac{x}{2})} dx$
	$I = \int_0^{\frac{\pi}{2}} \frac{1}{2} x \sec^2\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2}\right) dx$
	$I = \frac{1}{2} \int_0^{\frac{\pi}{2}} x \cdot sec^2\left(\frac{x}{2}\right) dx + \int_0^{\frac{\pi}{2}} tan\left(\frac{x}{2}\right) dx$
	$I = \frac{1}{2} \left[\left(x \cdot \tan\left(\frac{x}{2}\right) \cdot 2\right)_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 1 \cdot \tan\left(\frac{x}{2}\right) \cdot 2 dx \right] + \int_0^{\frac{\pi}{2}} \tan\left(\frac{x}{2}\right) dx$
	$I = \frac{1}{2} \left[\left(\frac{\pi}{2} \cdot \tan \frac{\pi}{4} \cdot 2 \right) - 0 \right] - \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} dx + \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} dx$
	$I = \frac{1}{2} \left[\frac{\pi}{1} \right] = \frac{\pi}{2} \qquad Ans$
Q.5)	$I = \int_0^{\frac{\pi}{4}} \sin^3(2t) \cdot \cos(2t) dt$
Sol.5)	(a) $I = \int_0^{\frac{\pi}{4}} \sin^3(2t) \cdot \cos(2t) dt$
	Put $sin(2t) = z$
	$\therefore \ 2\cos(2t)dt = dz \qquad when t = 0 \ ; \ z = 0$
	$\therefore 2\cos(2t)dt = dz \qquad when t = 0 ; z = 0$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Studies Today

$$cos(2t) dt = \frac{dx}{2} \qquad when t = \frac{\pi}{4} \; ; \; z = 1$$

$$\therefore I = \frac{1}{2} \int_{0}^{1} z^{3} dz$$

$$= \frac{1}{2} \left(\frac{t^{4}}{4}\right)_{0}^{1}$$

$$= \frac{1}{8} \qquad \text{Ans....}$$

$$0.6) \qquad I = \int_{0}^{4} \frac{\sqrt{x}}{\left(30 - e^{3}\right)^{3}} dx$$

$$\text{Sol.6)} \qquad I = \int_{4}^{4} \frac{\sqrt{x}}{\left(30 - e^{3}\right)^{3}} dx$$

$$\text{Put } 30 - x^{3/2} = t \qquad when x = 4 \; ; \; t = 30 - 8 = 22$$

$$= \frac{3}{2} x^{3/2} dx = dt \qquad when x = 9 \; ; \; t = 30 - 27 = 3$$

$$\sqrt{x} dx = \frac{2}{3} dt$$

$$\therefore I = \frac{-2}{3} \frac{3}{22} \frac{dt}{t^{2}}$$

$$= \frac{-2}{3} \left(-\frac{1}{t}\right)_{22}^{3}$$

$$= \frac{2}{3} \frac{1}{3} - \frac{1}{22}$$

$$= \frac{2}{3} \frac{1}{3} - \frac{1}{22}$$

$$= \frac{2}{3} \frac{25 - 6}{3} = \frac{2(19)}{3 \times 60} = \frac{19}{99} \quad \text{Ans....}$$

$$0.7) \qquad \int_{0}^{\pi} \sqrt{sin\varphi} \cos^{5}\varphi d\varphi$$

$$\text{Sol.7)} \qquad I = \int_{0}^{\pi} \sqrt{sin\varphi} \cos^{5}\varphi d\varphi$$

$$\text{Sol.7} \qquad I = \int_{0}^{1} \sqrt{t} (1 - \sin^{2}\varphi)^{2} dt$$

$$= \int_{0}^{1} \sqrt{t} (1 - t^{2})^{2} dt$$

$$= \int_{0}^{1} \sqrt{t} (1 - t^{2})^{2} dt$$

$$= \int_{0}^{1} \sqrt{t} (1 - t^{2})^{2} dt$$

$$= \int_{0}^{1} \sqrt{t} (1 + t^{4} - 2t^{2}) dt$$

$$= \int_{0}^{1} \sqrt{t} (1 + t^{4} - 2t^{2}) dt$$

$$= \left(\frac{2}{3} t^{2/2} + \frac{2}{11} t^{11/2} - 2 \cdot \frac{2}{7} t^{7/2}\right)_{0}^{1}$$

$$= \left(\frac{2}{3} + \frac{21}{11} - \frac{4}{7}\right) = (0)$$

$$= \frac{15 + 42 - 132}{231}$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Studies Today.com

	Studies Toudy.com
	$=\frac{64}{231} \qquad Ans \dots$
Q.8)	$I = \int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2}\right) dx$
Sol.8)	$I = \int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2}\right) dx$
	$I = 2 \int_0^1 tan^{-1}x dx$ $\left\{ \because 2tan^{-1}x = sin^{-1}\left(\frac{2x}{1+x^2}\right) \right\}$
	$I = 2 \int_0^1 tan^{-1} x \cdot 1 dx$
	$= 2 \left[(tan^{-1}x . x)_0^1 - \int_0^1 \frac{1}{1+x^2} . x dx \right]$
	Put $1 + x^2 = t$ when $x = 0$; $t = 1$
	$x dx = \frac{dt}{2} \qquad x = 1 , t = 2$
	$\therefore I = 2\left[\left(\frac{\pi}{4}.1\right) - (0) - \frac{1}{2}\right]_1^2 \frac{dt}{t}$
	$= 2 \left[\frac{\pi}{4} - \frac{1}{2} (\log t)_1^2 \right]$
	$= 2 \left[\frac{\pi}{4} - \frac{1}{2} (\log 2 - \log 1) \right]$
	$= 2 \left[\frac{\pi}{4} - \frac{1}{2} \log 2 \right] \qquad \dots \dots \{ \because \log 1 = 0 \}$
	$I = \frac{\pi}{2} - \log 2 \qquad Ans \dots$
Q.9)	$I = \int_0^1 \frac{1}{\sqrt{1+x} - \sqrt{x}} dx$
Sol.9)	$I = \int_0^1 \frac{1}{\sqrt{1+x} - \sqrt{x}} dx$
	Rationalize
	$I = \int_0^1 \frac{\sqrt{1+x} + \sqrt{x}}{1+x-x} dx$
	$I = \left[\frac{2}{3}(1+x)^{\frac{3}{2}} + \frac{2}{3}x^{\frac{3}{2}}\right]_0^1$
	$= \frac{2}{3} \left[(2)^{\frac{3}{2}} + (1)^{\frac{3}{2}} \right] - \frac{2}{3} \left[(1)^{\frac{3}{2}} + 0 \right]$
	$= \frac{2}{3} (2\sqrt{2} + 1) - \frac{2}{3} (1)$
	$=\frac{4\sqrt{3}}{3}+\frac{2}{3}-\frac{2}{3}$
	$I = \frac{4\sqrt{2}}{3}$ ans.
Q.10)	$I = \int_0^1 \frac{2x+3}{5x^2+1} dx$
Sol.10)	$I = \int_0^1 \frac{2x+3}{5x^2+1} dx \qquad (separate)$
	$I = 2 \int_0^1 \frac{x}{5x^2 + 1} dx + 3 \int_0^1 \frac{1}{5x^2 + 1} dx$
	Put $5x^2 + 1 = t$ $when x = 0$; $t = 1$
	$10x dx = dt \qquad when x = 1 ; t = 6$
_	

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

$$Studies Today.com$$

$$x dx = \frac{dt}{10}$$

$$x dx = \frac{dt}{10}$$

$$\therefore I = \frac{2}{10} \int_{1}^{6} \frac{dt}{t} + \frac{3}{5} \int_{0}^{1} \frac{1}{x^{2} + \left(\frac{1}{\sqrt{5}}\right)^{2}} dt$$

$$= \frac{1}{5} [\log t]_{1}^{6} + \frac{3}{5} \times \sqrt{5} \left[tan^{-1} (x \sqrt{5}) \right]_{0}^{1}$$

$$= \frac{1}{5} \left[(\log 6 - \log 1) + \frac{3}{\sqrt{5}} (tan^{-1} \sqrt{5} - tan^{-1} 0) \right]$$

$$I = \frac{1}{5} \log 6 + \frac{3}{\sqrt{5}} tan^{-1} (\sqrt{5}) \quad \text{ans.}$$

MMM Studies to day.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.