

DEFINITE INTEGRALS

Q.1)	$I = \int_0^\pi \log\left(1 + \cos x\right) dx$
Sol.1)	$I = \int_0^{\pi} \log(1 + \cos x) dx$ (1)
	$I = \int_0^{\pi} \log \left[1 + \cos \left(\pi - x \right) \right] dx$ (P-IV)
	$I = \int_0^{\pi} \log (1 - \cos x) dx \qquad(2)$
	(1) + (2)
	$2I = \int_0^{\pi} \log\left((1+\cos x)(1-\cos x)\right) dx$
	$2I = \int_0^\pi \log\left(1 - \cos^2 x\right) dx$
	$2I = \int_0^\pi \log(\sin^2 x) dx$
	$2I = 2\int_0^{\pi} \log(\sin x) dx \qquad \qquad \dots [\log m^n = n \log m]$
	$I = \int_0^\pi \log(\sin x) dx$
	$I = 2 \int_0^{\frac{\pi}{2}} \log \left(\sin x \right) dx \qquad \dots \dots (P-VI)$
	$\frac{1}{2} = \int_0^{\frac{\pi}{2}} \log(\sin x) dx \qquad \dots (3)$ $\frac{1}{2} = \int_0^{\frac{\pi}{2}} \log\left(\sin\left(\frac{\pi}{2} - x\right)\right) dx \qquad \dots (P-IV)$
	$\frac{1}{2} = \int_0^{\frac{\pi}{2}} \log \left(\sin \left(\frac{\pi}{2} - x \right) \right) dx \qquad \dots (P-IV)$
	$\frac{1}{2} = \int_0^{\frac{\pi}{2}} \log(\cos x) dx \qquad(4)$
	(3) + (4)
	$I = \int_0^{\frac{\pi}{2}} \log \left(\sin x \cdot \cos x \right) dx$
	$I = \int_0^{\frac{\pi}{2}} log \left(\frac{sin(2x)}{2} \right) dx$
	$I = \int_0^{\frac{\pi}{2}} \log \left(\sin(2x) \right) - \log 2 dx$
	$I = \int_0^{\frac{\pi}{2}} \log(\sin(2x)) dx - \int_0^{\frac{\pi}{2}} \log 2 dx$
	$I = \int_0^{\frac{\pi}{2}} \log(\sin(2x)) dx - \log_2(x)_0^{\frac{\pi}{2}}$
	$I = \int_0^{\frac{\pi}{2}} \log(\sin(2x)) dx - \frac{\pi}{2} \log 2$
	$I = I_1 - \frac{\pi}{2} \log 2 \qquad(5)$
	Where $I_1 = \int_0^{\frac{\pi}{2}} \log \left(\sin(2x) \right) dx$
	$Put \ 2x = t \qquad when \ x = 0 \ ; \ t = 0$
	$dx = \frac{dt}{2} \qquad \qquad x = \frac{\pi}{2} \; ; \; t = \pi$
	$\therefore I_1 = \frac{1}{2} \int_0^{\pi} \log(\sin t) dx$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

	Studies loady.com		
	$I_1 = \frac{1}{2} \times 2 \int_0^{\frac{\pi}{2}} \log(\sin t) dt$ (P-VI)		
	$I_1 = \int_0^{\frac{\pi}{2}} \log(\sin t) dt$		
	$I_1 = \int_0^{\frac{\pi}{2}} \log(\sin x) dx \qquad \qquad \dots \dots (P-I)$		
	$I_1 = \frac{I}{2} \qquad \dots \{from \ eq. 3\}$		
	$\therefore eq.(5)$ becomes		
	$I = \frac{I}{2} - \frac{\pi}{2} \log 2$		
	$\Rightarrow I = \frac{I}{2} = \frac{-\pi}{2} \log 2$		
	$\Rightarrow \frac{I}{2} = \frac{-\pi}{2} \log 2$		
	$I = -\pi \log 2$ ans.		
Q.2)	$I = \int_0^\pi \frac{x \tan x}{\sec x \cdot \csc x} dx$		
Sol.2)	$I = \int_0^\pi \frac{\frac{x \sin x}{\cos x}}{\frac{1}{\cos x} \cdot \frac{1}{\sin x}} dx$		
	$I = \int_0^\pi x \sin^2 dx \qquad \dots (1)$		
	$I = \int_0^{\pi} (\pi - x) \sin^2(\pi - x) dx$ (P-IV)		
	$I = \int_0^{\pi} (\pi - x) \sin^2 x dx \qquad(2)$		
	(1) + (2)		
	$2I = \int_0^{\pi} x \sin^2 x + \pi \sin^2 x - x \sin^2 x dx$		
	$2I = \pi \int_0^{\pi} \sin^2 x dx$		
	$2I = 2\pi \int_0^{\frac{\pi}{2}} \sin^2 dx \qquad(P-VI)$		
	$I = \pi \int_0^{\frac{\pi}{2}} \sin^2 x dx$		
	$I = \pi \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} dx$		
	$I = \frac{\pi}{2} \left[x - \frac{\sin(2x)}{2} \right]_0^{\frac{\pi}{2}}$		
	$I = \frac{\pi}{2} \left[\left(\frac{\pi}{2} - \frac{\sin \pi}{2} \right) - (0 - 0) \right]$		
	$I = \frac{\pi}{2} \left[\frac{\pi}{2} - 0 \right]$		
	$I = \frac{\pi^2}{4} ans.$		
Q.3)	$\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} dx$		
Sol.3)	$I = \int_1^2 \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} dx \qquad \dots $		
-			

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Studies Toudy.com		
	$I = \int_{1}^{2} \frac{\sqrt{1+2-x}}{\sqrt{3-(1+2-x)} + \sqrt{(1+2-x)}} dx \qquad \dots \dots \left[\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx \right]$	
	$I = \int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{x} + \sqrt{3-x}} dx \qquad(2)$	
	(1) + (2)	
	$2I = \int_1^2 \frac{\sqrt{x} + \sqrt{3-x}}{\sqrt{3-x} + \sqrt{x}} dx$	
	$2I = \int_1^2 1 \cdot dx$	
	$2I = (x)_1^2$	
	2I = 2 - 1	
	$\Rightarrow I = \frac{1}{2}$ ans.	
Q.4)	$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\cot x}} dx$	
Sol.4)	$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\cot x}} dx \qquad(1)$	
	$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\cot\left(\frac{\pi}{6} + \frac{\pi}{3} - x\right)}} dx \qquad \dots (P-V) \text{ (above)}$	
	$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\tan x}} dx$	
	$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \frac{1}{\sqrt{\cot x}}} dx$	
	$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + 1} dx \qquad \dots (2)$	
	(1) + (2)	
	$2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cot x} + 1}{\sqrt{\cot x + 1}} dx$	
	$2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \cdot dx$	
	$2I = (x)^{\frac{\pi}{3}}_{\frac{\pi}{6}}$	
	$2I = \frac{\pi}{3} - \frac{\pi}{6}$	
	$2I = \frac{\pi}{6}$	
	$I = \frac{\pi}{12}$ ans.	
Q.5)	$I = \int_0^1 \frac{ 5x - 3 }{(3/5)} dx$	
Sol.5)	$I = \int_0^1 \frac{ 5x - 3 }{(3/5)} dx$	
<u> </u>		

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Studies Today.com

~ _	rtaures rougy.com
	$I = -\int_0^{\frac{3}{5}} (5x - 3) dx + \int_{\frac{3}{5}}^{1} (5x - 3) dx$
	$I = -\left[\frac{5x^2}{2} - 3x\right]_0^{\frac{3}{5}} + \left[\frac{5x^2}{2} - 3x\right]_{\frac{3}{5}}^{1}$
	$I = -\left[\frac{5}{2} \cdot \frac{9}{25} - 3 \cdot \frac{3}{5}\right] + \left[\left(\frac{5}{2} - 3\right) - \left(\frac{5}{2} \cdot \frac{9}{25} - 3 \cdot \frac{3}{5}\right)\right]$
	$I = -\left(\frac{9}{10} - \frac{9}{5}\right) + \left[-\frac{1}{2} - \frac{9}{10} + \frac{9}{5}\right]$
	$I = -\frac{9}{10} + \frac{9}{5} - \frac{1}{2} - \frac{9}{10} + \frac{9}{5}$
	$I = \frac{13}{10} \qquad ans.$
Q.6)	$I = \int_{-5}^{5} \frac{ x-2 }{(2)} dx$
Sol.6)	$I = \int_{-5}^{5} \frac{ x-2 }{(2)} dx$
	$I = -\int_{5}^{2} (x-2) dx + \int_{2}^{5} (x-2) dx$
	$I = -\left[\frac{x^2}{2} - 2x\right]_{-5}^2 + \left[\frac{x^2}{2} - 2x\right]_2^5$
	$I = -\left[(2-4) - \left(\frac{25}{2} + 10\right) \right] + \left[\left(\frac{25}{2} - 10\right) - (2-4) \right]$
	$I = -\left[-2 - \frac{45}{2}\right] + \left[\frac{5}{2} + 2\right]$
	$I = 2 + \frac{45}{2} + \frac{5}{2} + 2 = 29$ ans.
Q.7)	$I = \int_{1}^{5} \frac{ x - 6 }{(6)} dx$
Sol.7)	$I = \int_{1}^{5} \frac{ x - 6 }{(6)} dx$
	$I = -\int_1^5 (x - 6) dx$
	$I = -\left[\frac{x^2}{2} - 6x\right]_1^5$
	$I = -\left[\left(\frac{25}{2} - 30 \right) - \left(\frac{1}{2} - 6 \right) \right]$
	$I = -\left[\frac{-35}{2} + \frac{11}{2}\right] = 12$ ans.
Q.8)	$I = \int_{-1}^{1} \frac{e x }{(0)} dx$
Sol.8)	$I = \int_{-1}^{0} e^{-x} dx + \int_{0}^{1} e^{x} dx$
	$I = \left[\frac{e^{-x}}{-1}\right]_{-1}^{0} + \left[e^{x}\right]_{0}^{1}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

	$I = \left[\frac{1}{-1} - \frac{e^1}{-1}\right] + \left[e^1 - e^0\right]$
	I = [-1 + e] + [e - 1]
	I = 2e - 2 ans.
Q.9)	$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x + \cos x dx$
Sol.9)	$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x + \cos x dx$
	$I = \int_{-\frac{\pi}{2}}^{0} \sin(-x) + \cos(-x) dx + \int_{0}^{\frac{\pi}{2}} \sin(x) + \cos(x) dx$
	$I = \int_{-\pi/2}^{0} -\sin x + \cos x dx + \int_{0}^{\frac{\pi}{2}} \sin x + \cos x dx$
	$I = [\cos x + \sin x]_{-\frac{\pi}{2}}^{0} + [-\cos x + \sin x]_{0}^{\frac{\pi}{2}}$
	$I = \left[\left(\cos 0 + \sin 0 \right) - \left(\cos \left(-\frac{\pi}{2} \right) \right) + \sin \left(-\frac{\pi}{2} \right) \right] + \left[\left(-\cos \frac{\pi}{2} + \sin \frac{\pi}{2} \right) - \left(-\cos 0 + \sin 0 \right) \right]$
	I = [(1+0) - (0-1)] + [(0+1) - (-1+0)]
	$I = 2 + 2 = 4 \qquad \text{ans.}$
Q.10)	$I = \int_0^2 x^2 + 2x - 3 dx$
Sol.10)	$I = \int_0^2 \frac{ (x+3)(x-1) }{(-3)} dx$
	0 1 2
	$\therefore I = -\int_0^1 (x^2 + 2x - 3) dx + \int_1^2 (x^2 + 2x - 3)$
	$I = -\left[\frac{x^2}{3} + x^2 - 3x\right]_0^1 + \left[\frac{x^3}{3} + x^2 - 3x\right]_1^2$
	$I = -\left[\left(\frac{1}{3} + 1 - 3\right) - (0)\right] + \left[\left(\frac{8}{3} + 4 - 6\right) - \left(\frac{1}{3} + 1 - 3\right)\right]$
	$I = -\left[\frac{-5}{3}\right] + \left[\frac{2}{3} + \frac{5}{3}\right]$
	$I = \frac{12}{3} = 4$ ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission