

DEFINITE INTEGRALS

	Properties of Definite Integrals :-
P-I	$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$
	e.g $\int_0^{\frac{\pi}{2}} \sin t dt = \int_a^{\frac{\pi}{2}} \sin x dx$
P-II	$\int_{a}^{b} f(x)dx = \int_{-b}^{a} f(x)dx$
P-III	$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$
	Where $a < c < b$
	e.g $\int_0^a f(x)dx = \int_a^{2a} f(x)dx + \int_0^{2a} f(x)dx$
P-IV	$\int_0^a f(x)dx = \int_0^a f(a-x)dx$
	Proof: Taking RHS $\int_0^a f(a-x)dx$
	Put $a - x = t$ when $x = 0 \Rightarrow t = a$
	Put $a - x = t$ when $x = 0 \Rightarrow t = a$ $-dx = dt \Rightarrow dx = -dt \text{ when } x = a \Rightarrow t = a$
	$\therefore RHS = -\int_{a}^{0} f(t)dt$
	$= \int_0^a f(t)dt \qquad \dots (by P-II)$
	$= \int_0^a f(x) dx \qquad \dots (by P-I)$
	= LHS
	$\therefore \int_0^a f(x)dx = \int_0^a f(a-x)dx \text{proved}$
P-V	$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$
	Proof: Do yourself by put $a + b - x = t$
P-VI	$\int_{b}^{2a} f(x)dx = \begin{cases} 2 \int_{0}^{a} f(x)dx & ; & f(2a-x) = f(x) \end{cases}$
	0 ; if f(2a-x) = -f(x)
	Mainly $\int_0^{2a} f(x)dx = 2 \int_0^a f(x)dx$
P-VII	Even - function property
	$\int_{-a}^{a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx & ; & if \ f(x) \to \text{ even} \\ 0 & ; & if \ f(x) \to \text{ odd} \end{cases}$
	If $f(-x) = f(x)$ then $f(x)$ is an even function
	If $f(-x) = -f(x)$ then $f(x)$ is an odd function
Q.1)	Evaluate I = $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx.$
Sol.1)	$I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \qquad \dots $

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Studies Today.com
$$I = \int_0^{\frac{\pi}{4}} \log\left(\frac{2}{1 + tanx}\right) dx$$

$$I = \int_{0}^{\frac{\pi}{6}} log \left(\frac{2}{1 + tanx}\right) dx \qquad(2)$$

$$Eq.(1) + (2)$$

$$2I = \int_{0}^{\frac{\pi}{6}} log \left(1 + tanx \cdot \frac{2}{1 + tanx}\right) dx$$

$$2I = \int_{0}^{\frac{\pi}{6}} log (2) dx$$

$$2I = log 2 \left(\frac{\pi}{4}\right)$$

$$2I = log 2 \left(\frac{\pi}{4}\right)$$

$$2I = log 2 \left(\frac{\pi}{4}\right)$$

$$\therefore I = \frac{\pi}{8} log 2 \quad ans.$$

$$Q.4)$$

$$I = \int_{0}^{\frac{\pi}{6}} 2 log(cos x) - log(sin(2x)) dx$$

$$Sol.4)$$

$$I = \int_{0}^{\frac{\pi}{6}} 2 log(cos x) - log(sin(2x)) dx$$

$$I = \int_{0}^{\frac{\pi}{6}} log \left(\frac{cos^{2}x}{sin(2x)}\right) dx \qquad(1)$$

$$I = \int_{0}^{\frac{\pi}{6}} log \left(\frac{cos^{2}x}{2}\right) dx \qquad(2)$$

$$Eq.(1) + (2)$$

$$2I = \int_{0}^{\frac{\pi}{6}} log \left(\frac{cos^{2}x}{2}\right) dx$$

$$2I = \int_{0}^{\frac{\pi}{6}} log \left(\frac{cos^{2}x}{2}\right) dx$$

$$2I = \int_{0}^{\frac{\pi}{6}} log \left(\frac{cos^{2}x}{2}\right) dx \qquad(tan x \cdot cot x = 1)$$

$$2I = \int_{0}^{\frac{\pi}{6}} log (1) - log(4) dx$$

$$2I = \int_{0}^{\frac{\pi}{6}} log (4) dx \qquad(log 1 = 0)$$

$$2I = -log 4 \left[\frac{\pi}{6}\right]$$

$$2I = -log 4 \left[\frac{\pi}{6}\right]$$

$$2I = -log 4 \left[\frac{\pi}{6}\right]$$

$$1 = -\frac{\pi}{4} log 4 \quad ans.$$

$$(or) I = -\frac{\pi}{4} log (2)^{2}$$

$$I = -\frac{\pi}{2} log 2 \quad ans.$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

	J.com
Q.5)	$I = \int_0^1 \log\left(\frac{1}{x} - 1\right) dx$
Sol.5)	$I = \int_0^1 \log\left(\frac{1-x}{x}\right) dx \qquad \dots (1)$
	$= \int_0^1 \log \left[\frac{1 - (1 - x)}{1 - x} \right] dx \qquad \dots \left[\int_0^a f(x) dx = \int_0^a f(a - x) dx \right]$
	$= \int_0^1 \log \left[\frac{x}{1-x} \right] dx \qquad \dots (2)$
	(1) + (2)
	$2I = \int_0^1 \log\left(\frac{1-x}{x} \cdot \frac{x}{1-x}\right) dx$
	$= \int_0^1 \log\left(1\right) dx$
	$2I = 0 \qquad \dots \{\because \log 1 = 0\}$
	I = 0 ans.
Q.6)	$I = \int_0^5 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{5 - x}} dx$
Sol.6)	$I = \int_0^5 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{5 - x}} dx \qquad \dots \dots (1)$
	$I = \int_0^5 \frac{\sqrt[3]{5-x}}{\sqrt[3]{5-x} + \sqrt[3]{5-(5-x)}} dx \qquad \dots \dots \left[\int_0^a f(x) dx = \int_0^a f(a-x) \right]$
	$I = \int_0^5 \frac{\sqrt[3]{5-x}}{\sqrt[3]{5-x} + \sqrt[3]{x}} dx \qquad(2)$
	(1) + (2)
	$2I = \int_0^5 \frac{\sqrt[3]{x} + \sqrt[3]{5 - x}}{\sqrt[3]{x} + \sqrt[3]{5 - x}} dx$
	$= \int_0^5 1. dx$
	$=(x)_0^5$
	2I = 5
	$I = \frac{5}{2}$ ans.
Q.7)	Show that $\int_0^{2a} f(x) dx = \int_0^a f(x) dx + \int_0^a f(2a - x) dx$
Sol.7)	R.H.S $\int_0^a f(x)dx + \int_0^a f(2a - x)dx$
	Put $2a - x = t$ when $x = 0$; $t = 2a$
	-dx = dt $dx = -dt$ when $x = a$; $t = a$
	$\therefore R.H.S = \int_0^a f(x)dx - \int_{2a}^a f(t)dt$
	$= \int_0^a f(x)dx + \int_a^{2a} f(t) dt \qquad \left[\int_0^b f(x)dx = -\int_b^a f(x) \right]$
	$= \int_0^a f(x)dx + \int_a^{2a} f(x)dx \qquad \dots \left[\int_a^b f(x)dx = \int_a^b f(t)dt \right]$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

	Studies Toury.com
	$= \int_0^{2a} f(x)dx \qquad \qquad \dots \left[\int_a^c f(x)dx + \int_c^b f(x)dx \right]$
	= LHS Proved
Q.8)	Show that $I = \int_0^1 x(1-x)^n dx$
Sol.8)	$I = \int_0^1 (1-x)[1-(1-x)]^n dx \qquad \dots \left[\int_0^a f(x) dx = \int_0^a f(a-x) dx \right]$
	$I = \int_0^1 (1-x)(x)^n dx$
	$I = \int_0^1 x^n - x^{n+1} dx$
	$I = \left[\frac{x^n}{n+1} - \frac{x^{n+2}}{n+2} \right]_0^1$
	$I = \left[\frac{1}{n+1} - \frac{1}{n+2} \right] - [0 - 0]$
	$I = \frac{n+2-n-1}{(n+1)(n+2)}$
	$I = \frac{1}{(n+1)(n+2)}$ ans.
Q.9)	$I = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx$
Sol.9)	$I = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx \qquad \dots $
	$I = \int_0^{\frac{\pi}{2}} \frac{\sin^2(\frac{\pi}{2} - x)}{\sin(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} - x)} dx \qquad \dots (P - IV)$
	$I = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{\cos x + \sin x} dx \qquad(2)$
	$(1) + (2)$ $2I = \int_0^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} dx$
	(Type: - single sin x & cos x)
	$2I = \int_0^{\frac{\pi}{2}} \frac{1}{\frac{2\tan x}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} dx$
	$2I = \int_0^{\frac{\pi}{2}} \frac{1 + \tan^2(\frac{x}{2})}{2\tan\frac{x}{2} + 1 - \tan^2\frac{x}{2}} dx$
	$2I = \int_0^{\frac{\pi}{2}} \frac{\sec^2(\frac{x}{2})}{2\tan\frac{x}{2} + 1 - \tan^2(\frac{x}{2})} dx$
	Put $\tan\left(\frac{x}{2}\right) = t$ when $x = 0$; $\tan(0) = t$
	$\sec^2\left(\frac{x}{2}\right) \cdot \frac{1}{2} dx = dt \qquad \qquad t = 0$
	$\operatorname{Sec}^2\left(\frac{x}{2}\right)dx = 2dt$ when $x = \frac{\pi}{2}$; $\tan\left(\frac{\pi}{4}\right) = t$,
	t = 1

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Studies Today.com
$$\therefore 2I = 2 \int_0^1 \frac{dt}{-t^2 + 2t + 1}$$

$$\begin{array}{lll} & \therefore \ 2\ l = 2\int_0^1 \frac{dt}{t^2 + 2t + 1} \\ & \ l = -\int_0^1 \frac{1}{(t-1)^2 - 1 - 1} dt \\ & \ = -\int_0^1 \frac{1}{(t-1)^2 - (\sqrt{2})^2} dt \\ & \ = \int_0^1 \frac{1}{(\sqrt{2})^2 - (t-1)^2} dt \\ & \ = \int_0^1 \frac{1}{(\sqrt{2})^2 - (t-1)^2} dt \\ & \ = \frac{1}{2\sqrt{2}} \left[\log \frac{\sqrt{2} - t}{\sqrt{2} - t + 1} \right]_0^1 \\ & \ = \frac{1}{2\sqrt{2}} \left[\log \left(\frac{\sqrt{2} - t}{\sqrt{2} - t} \right) - \log \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right] \\ & \ = \frac{1}{2\sqrt{2}} \left[\log \left(1 \right) - \log \left(\frac{\sqrt{2} - t}{\sqrt{2} + 1} \right) \right] \\ & \ l = \frac{1}{2\sqrt{2}} \log \left(\frac{\sqrt{2} - t}{\sqrt{2} + 1} \right) & \text{ans.} \end{array}$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Put
$$tan x = t$$
 when $x = 0$; $t = 0$

$$\therefore \sec^2 x \cdot dx = dt \quad \text{when } x = \frac{\pi}{2} \; ; \; t = \infty$$

$$\therefore 2I = \int_0^\infty \frac{dt}{t^2 + t + 1}$$

Perfect square

$$2I = \int_0^\infty \frac{1}{\left(t + \frac{1}{2}\right)^2 - \frac{1}{4} + 1} dt$$

$$2I = \int_0^\infty \frac{dt}{\left(t + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$2I = \frac{2}{\sqrt{3}} \left[\tan^{-1} \left(\frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) \right]_0^{\infty}$$

$$2I = \frac{2}{\sqrt{3}} \left[\tan^{-1} \left(\frac{2t+1}{\sqrt{3}} \right) \right]_0^{\infty}$$

$$2I = \frac{1}{\sqrt{3}} \left[\tan^{-1} \left(\frac{2t+1}{\sqrt{3}} \right) \right]_{0}^{\infty}$$

$$2I = \frac{2}{\sqrt{3}} \left[\tan^{-1} \left(\frac{2t+1}{\sqrt{3}} \right) \right]_{0}^{\infty}$$

$$2I = \frac{2}{\sqrt{3}} \left[\tan^{-1} (\infty) - \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) \right]$$

$$2I = \frac{2}{\sqrt{2}} \left[\frac{\pi}{2} - \frac{\pi}{6} \right]$$

$$2I = \frac{2}{\sqrt{2}} \left[\frac{\pi}{3} \right]$$

$$I = \frac{\pi}{3\sqrt{3}} \text{ ans.}$$

$$2I = \frac{2}{\sqrt{2}} \left[\frac{\pi}{2} - \frac{\pi}{6} \right]$$

$$2I = \frac{2}{\sqrt{2}} \left[\frac{\pi}{3} \right]$$

$$I = \frac{\pi}{3\sqrt{3}}$$
 ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission