TOPIC 8 DIFFERENTIAL EQUATIONS SCHEMATIC DIAGRAM

(ii).General and particular solutions of a differential	**	Ex. 2,3 pg384
equation		
(iii).Formation of differential	*	Q. 7,8,10 pg 391
equation whose general		
solution is given		
(iv). Solution of differential	*	Q.4,6,10 pg 396
equation by the method of		
separation of variables		
(vi).Homogeneous differential	**	Q. 3,6,12 pg 406
equation of first order and		
first degree		
(vii)Solution of differential	***	Q.4,5,10,14 pg 413,414
equation of the type		
dy/dx +py=q where p and q	~ 0	
are functions of x		
And solution of differential		
equation of the type		
dx/dy+px=q where p and q		
are functions of y		

SOME IMPORTANT RESULTS/CONCEPTS

- ** Order of Differential Equation: Order of the heighest order derivative of the given differential equation is called the order of the differential equation.
- ** Degree of the Differential Equation: Heighest power of the heighest order derivative when powers of all the derivatives are of the given differential equation is called the degree of the differential equation
- ** Homogeneous Differential Equation : $\frac{dy}{dx} = \frac{f_1(x,y)}{f_2(x,y)}$, where $f_1(x,y) \& f_2(x,y)$ be the homogeneous function of same degree.
- ** Linear Differential Equation:
 - i. $\frac{dy}{dx} + py = q$, where p & q be the function of x or constant.

Solution of the equation is : $y \cdot e^{\int p \, dx} = \int e^{\int p \, dx} \cdot q \, dx$, where $e^{\int p \, dx}$ is Integrating Factor (I.F.)

ii. $\frac{dx}{dy} + px = q$, where p & q be the function of y or constant.

Solution of the equation is: $x \cdot e^{\int p \, dy} = \int e^{\int p \, dy} \cdot q \, dy$, where $e^{\int p \, dy}$ is Integrating Factor (I.F.)

ASSIGNMENTS

1. Order and degree of a differential equation

1. Write the order and degree of the following differential equations

(i)
$$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 + 2y = 0$$

2. General and particular solutions of a differential equation

1. Show that $y = e^{-x} + ax + b$ is the solution of $e^{x} \frac{d^{2}y}{dx^{2}} = 1$

3. Formation of differential equation

LEVEL II

1. Obtain the differential equation by eliminating a and b from the equation $y = e^{x}(a\cos x + b\sin x)$

LEVEL III

- 1. Find the differential equation of the family of circles $(x a)^2 (y b)^2 = r^2$
- 2. Obtain the differential equation representing the family of parabola having vertex at the origin and axis along the positive direction of x-axis

4. Solution of differential equation by the method of separation of variables

1. Solve
$$\frac{dy}{dx} = 1 + x + y + xy$$

1. Solve
$$\frac{dy}{dx} = 1 + x + y + xy$$
 2. Solve $\frac{dy}{dx} = e^{-y} \cos x$ given that $y(0)=0$.

3. Solve
$$(1+x^2)\frac{dy}{dx} - x = \tan^{-1} x$$

5. Homogeneous differential equation of first order and first degree LEVEL II

1. Solve
$$(x^2 + xy)dy = (x^2 + y^2)dx$$

LEVEL III

Show that the given differential equation is homogenous and solve it.

$$1. (x - y) \frac{dy}{dx} = x + 2y$$

$$2. ydx + x \log(\frac{y}{x})dy - 2xdy = 0$$

3. Solve
$$xdy - ydx = \sqrt{x^2 - y^2}dx$$

4. Solve
$$x^2ydx - (x^3 + y^3)dy = 0$$

5. Solve
$$xdy - ydx = \sqrt{(x^2 + y^2)}dx$$
 CBSE2011 6. Solve $(y + 3x^2)\frac{dx}{dy} = x$

6. Solve
$$(y + 3x^2)\frac{dx}{dy} = x$$

7. Solve
$$x dy + (y - x^3) dx = 0$$
 CBSE2011 8. Solve $x dy + (y + 2x^2) dx = 0$

6. Linear Differential Equations

LEVEL I

1. Find the integrating factor of the differential $x \frac{dy}{dx} - y = 2x^2$

LEVEL II

1. Solve
$$\frac{dy}{dx} + 2y \tan x = \sin x$$

2. Solve
$$(1+x)\frac{dy}{dx} - y = e^{3x}(x+1)^2$$

3. Solve
$$x \frac{dy}{dx} + y = x \log x$$

LEVEL III

1. Solve
$$\frac{dy}{dx} = \cos(x+y)$$

$$2. \text{Solve } y e^y dx = (y^3 + 2xe^y) dy$$

3. Solve
$$x^2 \frac{dy}{dx} = y(x+y)$$

4. Solve
$$\frac{dy}{dx} + \frac{4x}{x^2 + 1}y = -\frac{1}{(x^2 + 1)^3}$$

5. Solve the differential equation
$$(x+2y^2)\frac{dy}{dx} = y$$
; given that when x=2,y=1

Questions for self evaluation

- 1. Write the order and degree of the differential equation $\left(\frac{d^3y}{dv^3}\right)^2 + \frac{d^2y}{dx^2} + \sin\left(\frac{dy}{dx}\right) = 0$
- 2. Form the differential equation representing the family of ellipses having foci on x –axis and centre at
- 3. Solve the differential equation : $(\tan^{-1} y x)dy = (1 + y^2)dx$, given that y = 0 when x = 0.
- 4. Solve the differential equation :xdy y dx = $\sqrt{x^2 + y^2}$ dx
- 5. Solve the differential equation : $x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x$.
- 6. Solve the differential equation : $x^2 dy + (y^2 + xy) dx = 0$, y(1) = 1

- 7. Show that the differential equation $2y.e^{\frac{x}{y}}dx + \left(y 2xe^{\frac{x}{y}}\right)dy = 0$ is homogeneous and find its particular solution given that y(0) = 1.
- 8. Find the particular solution of differential equation

$$\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x$$
, given that $y\left(\frac{\pi}{2}\right) = 0$.