Determinants

Important points to remember

- Determinant : To every square matrix $\mathrm{A}=\left[A_{i j}\right]$ of order nx n , we can associate a number (real or complex) called determinant of A . It is denoted by det A or $|A|$.

Properties:

(1) $|A B|=|A||B|$
(2) $|k A|_{n x n}=k^{n}|A|_{n x n}$, where k is a scalar.
(3) Area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ is given by

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

(4) If the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ are collinear then

$$
\left|\begin{array}{lll}
\mathrm{x}_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

Adjoint of square matrix A is the transpose of the matrix whose elements have been replaced by their co-factors and is denoted as adj. A .
Let $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ $\operatorname{adj} \mathrm{A}=\left[A_{i j}\right]_{n x n}$

Properties:

(i) $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|A| \mathrm{I}$
(ii)If A is a square matrix of order n then $|\operatorname{adj} A|=|A|^{n-1}$.
(iii) $\operatorname{adj}(\mathrm{AB})=(\operatorname{adj} \mathrm{B})(\operatorname{adj} \mathrm{A})$.
singular Matrix: A square matrix is called singular if $|A|=0$, otherwise it will be called a non - singular matrix.
Inverse of a matrix :A square matrix whose inverse exists, is called invertible matrix. inverse of a non-invertible matrix exists.

Inverse of a matrix A is denoted by A^{-1} and is given by

$$
A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A
$$

Downloaded from www.studiestoday.com

Properties

(i) $\mathrm{A} A^{-1}=A^{-1} \mathrm{~A}=\mathrm{I}$
(ii) $\left(A^{-1}\right)^{-1}=\mathrm{A}$
(iii) $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
(iv) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Solution of system of equations using matrix :

If $A X=B$ is a matrix equation then its solution is $x=A^{-1} B$.
(i) If $|A| \neq 0$, system is consistent and has a unique solution.
(ii) If $|A|=0$ and $(\operatorname{adj} \mathrm{A}) \mathrm{B} \neq 0$, system is inconsistent and has no solution.
(iii) If $|A|=0$ and $(\operatorname{adj} \mathrm{A}) \mathrm{B}=0$, system is consistent and has infinite
solution.

ASSIGNMENT

1. If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right]$, Find A^{-1} and hence solve system of equation

$$
\begin{aligned}
& x+2 y-3 z=-4 \\
& 2 x+3 y+2 z=2 \\
& 3 x-3 y-4 z=11
\end{aligned}
$$

2. If $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]$ Find AB \& hence solve

$$
x-y=3,
$$

$$
2 x+3 y+4 z=17
$$

$$
\mathrm{y}+2 \mathrm{z}=7 .
$$

3. Check the consistency and inconsistency of the following linear equations.
i) $3 x-y+2 z=3$
ii) $2 x+y-2 z=4$
$2 x+y+3 z=5$
$x-2 y+z=-2$
$x-2 y-z=1$
$5 x-5 y+z=-2$

$$
\text { iii) } \begin{array}{rr}
3 x+y=5 & \text { iv) } x+y-z=0 \\
-6 x-2 y=9 & x-2 y+z=0 \\
3 x+6 y-5 z=0
\end{array}
$$

4. Determine the product $\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$ and use it to solve the system of equations.

$$
x-y+z=4, x-2 y-2 z=9,2 x+y+3 z=1
$$

5. Without expanding, show that the values of each of the following determinants is zero.
i) $\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|$
ii) $\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|$
6. Using the properties of determinants evaluate the following:
i) $\left|\begin{array}{ccc}x+y & x & x \\ x & x+y & x \\ x & x & x+y\end{array}\right|$
ii) $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$
iii) $\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
iv) $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$
7. Prove the following identities:
i) $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}$
ii) $\left|\begin{array}{ccc}a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c\end{array}\right|=2(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a})$
iii) $\left|\begin{array}{ccc}0 & b^{2} a & c^{2} a \\ a^{2} b & 0 & c^{2} b \\ a^{2} c & b^{2} c & 0\end{array}\right|=2 \mathrm{a}^{3} \mathrm{~b}^{3} \mathrm{c}^{3}$
iv) $\left|\begin{array}{lll}b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c\end{array}\right|=3 a b c-a^{3}-b^{3}-c^{3}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

$$
\begin{aligned}
& \text { v) }\left|\begin{array}{ccc}
1 & a^{2}+b c & a^{3} \\
1 & b^{2}+c a & b^{3} \\
1 & c^{2}+a b & c^{3}
\end{array}\right|=-(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right) \\
& \text { vi) }\left|\begin{array}{ccc}
a^{2} & b c & a c+c^{2} \\
a^{2}+a b & b^{2} & a c \\
a b & b^{2}+b c & c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2} \\
& \text { vii) }\left|\begin{array}{ccc}
-a^{2} & a b & a c \\
a b & -b^{2} & b c \\
a c & b c & -c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2} \\
& \text { viii) }\left|\begin{array}{ccc}
-a\left(b^{2}+c^{2}-a^{2}\right) & -b\left(c^{2}+a^{2}-b^{2}\right) & 2 c^{3} \\
2 a^{3} & 2 b^{3} & -c\left(a^{2}+b^{2}-c^{2}\right)
\end{array}\right|
\end{aligned}
$$

$$
=\mathrm{abc}\left(b^{2}+c^{2}+a^{2}\right)^{3}
$$

8. Determine the product $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]\left[\begin{array}{ccc}-3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1\end{array}\right]$ and use it to solve the system of equations.

$$
x+y+z=0, x+2 y-3 z=-14,2 x-y+3 z=9
$$

9. Using the properties of determinants, prove the following:

$$
\left|\begin{array}{ccc}
1+x & 1 & 1 \tag{CBSE-2009}\\
1 & 1+y & 1 \\
1 & 1 & 1+z
\end{array}\right|=x y z+x y+y z+z x
$$

10. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ all are different \&

$$
\left|\begin{array}{lll}
x & x^{2} & 1+x^{3} \\
y & y^{2} & 1+y^{3} \\
Z & z^{2} & 1+z^{3}
\end{array}\right|=0 \text {, show that } \mathrm{xyz}=-1
$$

11. If $\mathrm{A} \& \mathrm{~B}$ are square matrices of order 3 such that $|A|=-1 \&|B|=3$, then find the value of $|3 A B|$.
12. Without expanding evaluate the determinant

$$
\left|\begin{array}{lll}
\left(a^{x}+a^{-x}\right)^{2} & \left(a^{x}-a^{-x}\right)^{2} & 1 \\
\left(a^{y}+a^{-y}\right)^{2} & \left(a^{y}-a^{-y}\right)^{2} & 1 \\
\left(a^{z}+a^{-z}\right)^{2} & \left(a^{z}-a^{-z}\right)^{2} & 1
\end{array}\right| \text {,where } \mathrm{a}>0 \text { and } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R} .
$$

13. Using the properties of determinants, prove the following:

$$
\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \\
2 & 3+2 p & 1+3 p+2 q \\
3 & 6+3 p & 1+6 p+3 q
\end{array}\right|=1
$$

[CBSE-2009]
14. Prove: $\left|\begin{array}{lll}1 & a & a^{2}-b c \\ 1 & b & b^{2}-a c \\ 1 & c & c^{2}-a c\end{array}\right|=0$
16. Find the area of triangle using the determinants if three of its vertices
are (5,2), (-3,-1),(6,0).
17. If the points (a,b), (c, d), and $(a+c, b+d)$ are collinear, show that $a d=b c$.
18. Find the value of α so that the points $(1,-5),(-4,5)$,and $(\alpha, 7)$ are collinear.
19.If $\mathrm{a}, \mathrm{b}, \& \mathrm{c}$ are distinct real no. and the system of equations
$a x+a^{2} y+\left(a^{3}+1\right) z=0$
$b x+b^{2} y+\left(b^{3}+1\right) z=0$
$c x+c^{2} y+\left(c^{3}+1\right) z=0$ has a non trivial solution show that $a b c=-1$.
20. Find the minor of element 5, $\left|\begin{array}{ccc}-3 & 6 & 5 \\ 2 & 1 & 0 \\ -1 & 6 & 5\end{array}\right|$
21. Find the co- factor of element $\mathrm{a}_{23},\left|\begin{array}{ccc}-8 & 6 & 0 \\ 6 & 1 & 0 \\ -1 & 6 & 5\end{array}\right|$
22.Using the co-factor of the second row of determinant

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \text { find the value of } \Delta
$$

23.Find A^{-1} where $\left[\begin{array}{ccc}6 & 4 & 2 \\ -12 & 15 & 18 \\ 25 & -20 & 15\end{array}\right]$ and solve the following

$$
\begin{gathered}
6 x-12 y+25 z=4 \\
4 x+15 y-20 z=3 \\
2 x+18 y+15 z=10
\end{gathered}
$$

24. .Find A^{-1} where $\left[\begin{array}{ccc}3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3\end{array}\right]$ and solve the following

$$
\begin{aligned}
& 3 x+4 y+7 z=14 \\
& 2 x-y+3 z=4 \\
& x+2 y-3 z=0
\end{aligned}
$$

25. solve the following system of equations using matrices:

$$
\begin{aligned}
& \frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4 \\
& \frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1 \\
& \frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2 \quad \mathrm{x}, \mathrm{y}, \mathrm{z} \neq 0
\end{aligned}
$$

26. Find the value of α,for which the homogeneous system of equation:
$2 x+3 y-2 z=0$
$2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}=0$
$7 \mathrm{x}+\alpha \mathrm{y}-\mathrm{z}=0 \quad$ has non trivial solutions. Find the solutions.
27.Solve the following determinant equation:
(i) $\left|\begin{array}{ccc}a+x & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=0$
(ii) $\left|\begin{array}{ccc}1+x & 3 & 5 \\ 2 & x+2 & 5 \\ 2 & 3 & x+4\end{array}\right|=0$

ANSWERS:
4. $x=3, y=-2, z=-1$ 8. $x=-1, y=-2, z=3$ 11. $-81 \quad$ 23. $x=1 / 2, y=1 / 3, z=1 / 5$
24. $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1 \quad$ 25. $\mathrm{x}=2, \mathrm{y}=3, \mathrm{z}=5$ 26. $\alpha=\frac{57}{10}, \mathrm{y}=\frac{5}{4} \mathrm{k}, \mathrm{x}=\frac{-7}{8} \mathrm{k}, \mathrm{z}=\mathrm{k}$

Downloaded from www.studiestoday.com

