Downloaded from www.studiestoday.com

Determinants Class 12th

Short Questions

Sol.7)

Since $-1 \le x < 0$: [x] = -1

Q.1) Order
$$3 \times 3$$
 find $|A^{-1}| = ?$
Sol.1) We have $|A^{-1}| = \left|\frac{1}{|A|} \cdot Adj A\right|$

$$= \frac{1}{|A|^3} \cdot |Adj A|$$

$$= \frac{1}{|A|^3} \cdot |A|^{3-1} = \frac{1}{|A|^3} \cdot |A|^2$$

$$\therefore |A^{-1}| = \frac{1}{|A|} \quad Ans.$$
Q.2) Order 3×3 ; $|A| = 3$ and $|2 AB| = 120$ find $|B'| = ?$
Sol.2) We have $|2AB| = 2^3 |AB|$

$$120 = 8 \times 3 \times |B|$$

$$5 = |B|$$
Since $|B'| = |B|$

$$\Rightarrow |B'| = 5 \quad Ans....$$
Q.3) Order 2×2 ; $Adj A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ and $Adj B = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ find $Adj(AB) = ?$
Sol.3) We have $Adj (AB) = (Adj B) (Adj A)$

$$= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 21 & 4 \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ 21 & 17 \end{bmatrix} \quad Ans....$$
Q.4). Order 2×2 ; $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ find $A(Adj A)$ without finding $Adj A$.
Sol.4) We have, $A|Adj A| = |A| I$

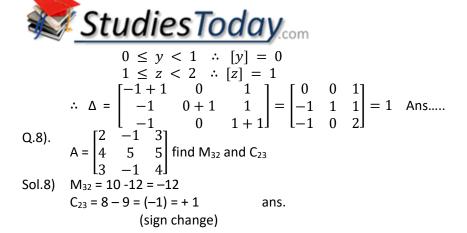
$$= \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= (-2) \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \quad Ans....$$
Q.5). If $n = 3 \times 3$ find $|Adj(Adj A)| = |A| n$

$$= |Adj A|^2$$

$$= (|A|^{3-1})^2 = |A|^4$$

$$= (5)^4 = 625 \quad Ans.$$
Q.6) If $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ find $(BA)^{-1}$ and $B^{-1} \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$
Sol.6) We know $(BA)^{-1} = A^{-1} B^{-1}$


$$= |B| = 12 - 12 = 0 \quad \Rightarrow \quad B \text{ is non invertible}$$

$$\therefore (BA)^{-1} \text{ not possible}$$
Q7). If $-1 \le x < 0$; $0 \le y < 1$ and $1 \le z < 2$

$$= [x] \quad [y] \quad [z] \quad [y] \quad [z] \quad [x] \quad [y] \quad [z] \quad [x] \quad [y] \quad [z] + 1$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

MMM. Stillies to day. com

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission