StudiesToday

Determinants
 Class 12 ${ }^{\text {th }}$

Short Questions

Q.1) Order 3×3 find $\left|\mathrm{A}^{-1}\right|=$?

Sol.1) We have $\left|A^{-1}\right|=\left\lvert\, \frac{1}{|A|}\right.$. Adj $A \mid$

$$
=\frac{1}{|\mathrm{~A}|^{\mid}}|\operatorname{Adj} \mathrm{A}|
$$

$$
=\frac{1}{|\mathrm{~A}|^{3}} \cdot|\mathrm{~A}|^{3-1}=\frac{1}{|\mathrm{~A}|^{3}} \cdot|\mathrm{~A}|^{2}
$$

$\therefore\left|A^{-1}\right|=\frac{1}{|A|} \quad$ Ans.
Q.2) Order $3 \times 3 ;|\mathrm{A}|=3$ and $|2 \mathrm{AB}|=120$ find $\left|\mathrm{B}^{\prime}\right|=$?

Sol.2) We have $|2 A B|=2^{3}|A B|$

$$
120=2^{3}|\mathrm{~A}||\mathrm{B}|
$$

$$
120=8 \times 3 \times|B|
$$

$$
5=|B|
$$

Since $\left|B^{\prime}\right|=|B|$

$$
\Rightarrow \quad\left|B^{\prime}\right|=5 \quad \text { Ans..... }
$$

Q.3) Order 2×2; $\operatorname{Adj} A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$ and $\operatorname{Adj} B=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$ find $\operatorname{Adj}(A B)=$?

Sol.3) We have $\operatorname{Adj}(A B)=(\operatorname{Adj} B)(\operatorname{Adj} A)$

$$
=\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
8 & 7 \\
21 & 17
\end{array}\right] \quad \text { Ans } \ldots
$$

Q.4). Order $2 \times 2 ; A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ find $A(\operatorname{Adj} A)$ without finding Adj A.

Sol.4) We have, $A|\operatorname{Adj} \mathrm{~A}|=|\mathrm{A}| \mathrm{I}$

$$
\begin{aligned}
& \left.=\left\lvert\, \begin{array}{ll|l}
1 & 2 & 1 \\
3 & 4 & 0 \\
0 & 1
\end{array}\right.\right] \\
& =(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
A(\operatorname{Adj} A) & =\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right] \quad \text { Ans.... }
\end{aligned}
$$

Q.5). If $n=3 \times 3$ find $|\operatorname{Adj}(\operatorname{Adj} A)|$ and $|A|=5$

Sol.5) We have $|\operatorname{Adj}(\operatorname{Adj} A)|=|A|^{n-1}$

$$
\begin{aligned}
& =\mid \text { Adj A }\left.\right|^{2} \\
& =\left(|\mathrm{A}|^{3-1}\right)^{2}=|\mathrm{A}|^{4} \\
& =(5)^{4}=625 \quad \text { Ans. }
\end{aligned}
$$

Q.6) If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ find $(B A)^{-1}$ and $B^{-1}\left[\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right]$

Sol.6) We know (BA) ${ }^{-1}=A^{-1} B^{-1}$

$$
|B|=12-12=0 \quad \Rightarrow B \text { is non invertible }
$$

$\therefore(\mathrm{BA})^{-1}$ not possible
Q7). If $-1 \leq x<0 ; 0 \leq y<1$ and $1 \leq z<2$
Find $\Delta=\left|\begin{array}{ccc}{[x]+1} & {[y]} & {[z]} \\ {[x]} & {[y]+1} & {[z]} \\ {[x]} & {[y]} & {[z]+1}\end{array}\right|$
Sol.7) Since $-1 \leq x<0 \quad \therefore \quad[x]=-1$
Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com
StudiesToday
$0 \leq y<1 \quad \therefore \quad[y]=0$
$1 \leq z<2 \quad \therefore[z]=1$
$\therefore \Delta=\left[\begin{array}{ccc}-1+1 & 0 & 1 \\ -1 & 0+1 & 1 \\ -1 & 0 & 1+1\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 2\end{array}\right]=1 \quad$ Ans.....
Q.8).
$A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 4 & 5 & 5 \\ 3 & -1 & 4\end{array}\right]$ find M_{32} and C_{23}
Sol.8)

$$
\begin{aligned}
\mathrm{M}_{32}=10-12 & =-12 \\
\mathrm{C}_{23}=8-9= & (-1)=+1 \\
& \text { (sign change) }
\end{aligned}
$$ reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

