Downloaded from www.studiestoday.com

Determinants Class 12th

Q.1)	Find the value of x if the area of Δ is 35 square units with vertices $(x, 4), (2, -6)$ and $(5, 4)$.
Sol.1)	Let vertices are $A(x,4)$, $B(2,-6)$ and $C(5,4)$
	Area of $\triangle ABC = \frac{1}{2} \begin{vmatrix} x & 4 & 1 \\ 2 & -6 & 1 \\ 5 & 4 & 1 \end{vmatrix}$
	IJ + II
	$35 = \frac{1}{2} x(-10) - 4(-3) + 1(38) $
	$\Rightarrow 35 = \frac{1}{2} \left -10x + 12 + 38 \right $
	$\Rightarrow 70 = -10x + 50 $
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{vmatrix} 10x = -20 \\ x = -2 \end{vmatrix} $
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Q.3)	
	Find the value of x so that matrix A = $\begin{bmatrix} (x-1) & 1 & 1 \\ 1 & (x-1) & 1 \\ 1 & 1 & (x-1) \end{bmatrix}$ is singular/ Non-
6 10)	Invertible.
Sol.3)	Since matrix A is singular ∴ A = 0
	x - 1
	$\begin{vmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{vmatrix} = 0$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\Rightarrow (x-1)[(x-1)^2-1]-1[x-1-1]+1[1-x+1]=0$ \Rightarrow (x-1)(x^2-2x)-1(x-2)+(2-x)=0
	$\Rightarrow x^3 - 2x^2 - x^2 + 2x - x + 2 + 2 - x = 0$
	$\Rightarrow x^3 - 3x^2 + 4 = 0$
	By trial method
	(x + 1) (x - 2) (x + 1) = 0
	$\rightarrow x = -1, x = 2$ difs.
Q.4)	(a) Evaluate the determinant $\Delta = \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \end{vmatrix}$. Also prove $2 \le \Delta \le 4$.
	$\begin{vmatrix} -1 & -\sin\theta & 1 \end{vmatrix}$
	$ x \sin \theta \cos \theta $
	(b) Prove that $\Delta = \begin{vmatrix} -\sin \theta & -x & 1 \\ \cos \theta & 1 & y \end{vmatrix}$ is independent of θ .
Sol.4)	$\begin{vmatrix} \cos \theta & 1 & x \\ 1 & \sin \theta & 1 \end{vmatrix}$
	(a) we have, $\Delta = \begin{vmatrix} -\sin \theta & 1 & \sin \theta \end{vmatrix}$
	$\begin{vmatrix} -1 & -\sin \theta & 1 \\ \Rightarrow \Delta = 1(1 + \sin^2 \theta) - \sin \theta (-\sin \theta + \sin \theta) + 1(\sin^2 \theta + 1) \end{vmatrix}$
	$\Rightarrow \Delta = 1(1 + \sin^2\theta) - \sin\theta(-\sin\theta + \sin\theta) + 1(\sin^2\theta + 1)$ $\Rightarrow \Delta = 1 + \sin^2\theta + 0 + \sin^2\theta + 1$
	$\Rightarrow \Delta = 1 + 3in \theta + \theta + 3in \theta + 1$ $\Rightarrow \Delta = 2 + 2 \sin^2 \theta$
	Now , we know
	$-1 \le \sin \theta \le 1$
	$\Rightarrow 0 \le \sin^2 \theta \le 1$
	$\Rightarrow 0 \le 2 \sin^2 \theta \le 2 \qquad \text{(multiply by 2)}$
	$\Rightarrow 2 \le 2 + 2\sin^2\theta \le 4 \qquad \text{(adding 2)}$
	$\Rightarrow 2 \le \Delta \le 4 $ (proved) (b) $\Delta = x(-x^2 - 1) - \sin \theta(-x \sin \theta - \cos \theta) + \cos \theta(-\sin \theta + x \cos \theta)$
	$\Delta = x(-x^2 - 1) - \sin\theta(-x\sin\theta - \cos\theta) + \cos\theta(-\sin\theta + x\cos\theta)$ $\Delta = -x^3 - x + x\sin^2\theta + \sin\theta\cos\theta - \sin\theta\cos\theta + x\cos^2\theta$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com


```
\Delta = -x^3 - x + x(\sin^2\theta + \cos^2\theta)
\Delta = -x^3 - x + x(1)
\Delta = -x^3 \quad \text{which is independent of } \theta.
```

Short Questions

```
Q.5)
          Order 3 \times 3, |A| = 5. Find |Adj A| = ?
Sol.5)
          We have n = 3, |A| = 5
          and |Adj A| = |A|^{n-1}
                        =(5)^{3-1}=25 ans.
Q.6)
          Order 3 \times 3, |Adj A| = 81 find |A| = ?
          We have n = 3, |Adj A| = 81
Sol.6)
                    \Rightarrow |Adj A| = |A|^{n-1}
                    \Rightarrow 81 = |A|<sup>2</sup>
                    \Rightarrow |A| = \pm 9
                                       ans.
                                                               9.9.4.0014
Q.7)
          Order 3 \times 3; |A| = 3 find |4A| = ?
Sol.7)
          We have n = 3, |A| = 3
                                              \dots \{ : |kA| = k^n |A| \}
                     |4A| = 4^3 |A|
                         = 64 \times 3
                         = 192
                                   ans.
Q.8)
          Order 3 \times 3 ; |A| = 5 find |2Adj A| = ?
             |2Adj A| = 2^3 |Adj A| = 2^3 |A|^{3-1}
Sol.8)
                       = 8 (5)^2 = 200
Q.9)
          Order 4 \times 4; |3 \text{ Adj A}| = 243 \text{ Find } |A| = ?
Sol.9)
          We have |3 \text{ Adj A}| = 3^4 |\text{Adj A}|
                             243 = 3^4 |A|^{4-1}
                             243 = 81 |A|^3
                              |A|^3 = 3
                             |A| = (3)^{1/3}
Q.10)
          Order 4 \times 4; |A| = 5 find |A'| = ?
Sol.10)
          We know |A'| = |A|
                   \Rightarrow |A'| = 5 ans.
```

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission