StudiesToday

Determinants Class 12 ${ }^{\text {th }}$

Q.1)	Show that $\left\|\begin{array}{ccc}1 & 1 & 1 \\ m c_{1} & m+1 c_{1} & m+2 c_{1} \\ m c_{2} & m+1 c_{2} & m+2 c_{2}\end{array}\right\|=1$
Sol.1)	
Q.2)	$\operatorname{Show}\left\|\begin{array}{lcc}(b+c)^{2} & b a & c a \\ a b & (c+a)^{2} & c b \\ a c & b c & (a+b)^{2}\end{array}\right\|=2 \mathrm{abc}(a+b+c)^{3}$
Sol.2)	We have $\left\|\begin{array}{lll}(b+c)^{2} & b a & c a \\ a b & (c+a)^{2} & c b \\ a c & b c & (a+b)^{2}\end{array}\right\|$ $\begin{aligned} & =R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}, R_{3} \rightarrow c R_{3} \\ & =\frac{1}{a b c}\left\|\begin{array}{ccc} a(b+c)^{2} & b a^{2} & c a^{2} \\ a b^{2} & b(c+a)^{2} & c b^{2} \\ a c^{2} & b c^{2} & c(a+b)^{2} \end{array}\right\| \end{aligned}$ taking $\mathrm{a}, \mathrm{b}, \mathrm{c}$ common from c_{1}, c_{2} and c_{3} resp. $=\frac{1}{a b c}\left\|\begin{array}{ccc} a(b+c)^{2} & b a^{2} & c a^{2} \\ a b^{2} & b(c+a)^{2} & c b^{2} \\ a c^{2} & b c^{2} & c(a+b)^{2} \end{array}\right\|, \left.~ \begin{array}{ccc} c_{1} \rightarrow c_{1}-c_{3} \text { and } c_{2} \rightarrow c_{2}-c_{3} \\ (b+c+a)(b+c-a) & 0 & a^{2} \\ 0 & (c+a+b)(c-a-b) & b^{2} \\ (c+a+b)(c-a-b) & (c+a+b)(c-a-b) & (a+b)^{2} \end{array} \right\rvert\,$ taking $(a+b+c)$ common from $\mathrm{C}_{1} \& \mathrm{C}_{2}$ both

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =(a+b+c)^{2}\left\|\begin{array}{ccc} b+c-a & 0 & a^{2} \\ 0 & c+a-b & b^{2} \\ c-a-b & c-a-b & (a+b)^{2} \end{array}\right\| \\ R_{3} & \rightarrow R_{3}\left(R_{1}+R_{2}\right) \\ & =(a+b+c)^{2}\left\|\begin{array}{ccc} b+c-a & 0 & a^{2} \\ 0 & c+a-b & b^{2} \\ c_{1} & \rightarrow a c_{1} \mathrm{and} c_{2} \rightarrow b c_{2} & -2 \mathrm{a} \\ 2 \mathrm{ab} \end{array}\right\| \\ & =\frac{(a+b+c)^{2}}{a b}\left\|\begin{array}{ccc} a b+a c-a^{2} & 0 & a^{2} \\ 0 & b c+a b-b^{2} & b^{2} \\ -2 \mathrm{ab} & -2 \mathrm{ab} & 2 \mathrm{ab} \end{array}\right\| \\ c_{1} & \rightarrow c_{1}+c_{3} \mathrm{andc} c_{2} \rightarrow c_{2}+c_{3} \\ & =\frac{(a+b+c)^{2}}{a b}\left\|\begin{array}{ccc} a b+a c & a^{2} & a^{2} \\ b^{2} & b c+a b & b^{2} \\ 0 & 0 & 2 \mathrm{ab} \end{array}\right\| \end{aligned}$ taking a, b and $2 a b$ common from R_{1}, R_{2} and R_{3} resp. $=\frac{(a+b+c)^{2}}{a b} \cdot a b(2 \mathrm{ab})\left\|\begin{array}{ccc} b+c & a & a \\ b & c+a & b \\ 0 & 0 & 1 \end{array}\right\|$ expanding $\begin{aligned} & =2 \mathrm{ab}(a+b+c)^{2}[(b+c)(c+a)-a(b)+a(0)] \\ & =2 \mathrm{ab}(a+b+c)^{2}\left(b c+a b+c^{2}+a c-a b\right) \\ & =2 \mathrm{ab}(a+b+c)^{2} . c(b+c+a) \\ & =2 \mathrm{abc}(a+b+c)^{3}=\text { RHS ans. } \end{aligned}$
Q.3)	Show that $\left\|\begin{array}{ccc}1+a^{2}-b^{2} & 2 \mathrm{ab} & -2 \mathrm{~b} \\ 2 \mathrm{ab} & 1-a^{2}+b^{2} & 2 \mathrm{a} \\ 2 \mathrm{~b} & -2 \mathrm{a} & 1-a^{2}-b^{2}\end{array}\right\|=\left(1+a^{2}+b^{2}\right)^{3}$
Sol.3)	We have $\left\|\begin{array}{ccc}1+a^{2}-b^{2} & 2 \mathrm{ab} & -2 \mathrm{~b} \\ 2 \mathrm{ab} & 1-a^{2}+b^{2} & 2 \mathrm{a} \\ 2 \mathrm{~b} & -2 \mathrm{a} & 1-a^{2}-b^{2}\end{array}\right\|$ Main step $\quad c_{1} \rightarrow c_{1}-b c_{3}$ and $c_{2} \rightarrow a c_{3}$ $\begin{aligned} & =\left\|\begin{array}{ccc} 1+a^{2}-b^{2}+2 \mathrm{~b}^{2} & 2 \mathrm{ab}-2 \mathrm{ab} & -2 \mathrm{~b} \\ 2 \mathrm{ab}-2 \mathrm{ab} & 1-a^{2}+b^{2}+2 \mathrm{a}^{2} & 2 \mathrm{a} \\ 2 \mathrm{~b}-b+a^{2} b+b^{3} & -2 \mathrm{a}+a-a^{3}-a b^{2} & 1-a^{2}-b^{2} \end{array}\right\| \\ & =\left\|\begin{array}{ccc} 1+a^{2}+b^{2} & 0 & -2 \mathrm{~b} \\ 0 & 1+a^{2}+b^{2} & 2 \mathrm{a} \\ b\left(1+a^{2}+b^{2}\right) & -a\left(1+a^{2}+b^{2}\right) & 1-a^{2}-b^{2} \end{array}\right\| \end{aligned}$ taking $\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}\right)$ common from c_{1} and c_{2} $=\left(1+a^{2}+b^{2}\right)^{2}\left\|\begin{array}{ccc} 1 & 0 & -2 \mathrm{~b} \\ 0 & 1 & 2 \mathrm{a} \\ b & -a & 1-a^{2}-b^{2} \end{array}\right\|$ expanding $\begin{aligned} & =\left(1+a^{2}+b^{2}\right)^{2}\left[1\left[1-a^{2}-b^{2}+2 \mathrm{a}^{2}\right]-2 \mathrm{~b}(-b)\right] \\ & =\left(1+a^{2}+b^{2}\right)^{2}\left[1-a^{2}-b^{2}+2 \mathrm{a}^{2}+2 \mathrm{~b}^{2}\right] \\ & =\left(1+a^{2}+b^{2}\right)^{2}\left(1+a^{2}+b^{2}\right) \\ & =\left(1+a^{2}+b^{2}\right)^{3}=\text { RHS ans. } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

Solving System of Linear Equations (Matrix Method)

Q.4) \quad Solve the equations using matrix method $x+2 y+z=7 ; x+3 z=$ $11 ; 2 x-3 y=1$
Sol.4) The given equation are
$x+2 y+z=7$
$x+0 y+3 z=11$
$2 x-3 y+0 z=1$
these equation can be written in matrix form
$\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & -3 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7 \\ 11 \\ 1\end{array}\right]$
(or) $A x=B$
$\Rightarrow x=A^{-1} B$
Where $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & -3 & 0\end{array}\right] ; B\left[\begin{array}{c}7 \\ 11 \\ 1\end{array}\right] \quad \& \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
Now

$$
\begin{aligned}
& |A|=1(0+9)-2(0-6)+1(-3-0)=9+12-3 \\
& |A|=18 \neq 0
\end{aligned}
$$

\therefore system is consistent and unique solution
Cofactors

$$
\begin{aligned}
& c_{11}=9 ; c_{12}=-6 ; c_{14}=-3 \\
& c_{21}=-3 ; c_{22}=-2 ; c_{23}=7 \\
& c_{31}=6 ; c_{32}=-2 ; \quad c_{33}=-2
\end{aligned}
$$

$$
\text { Now } \operatorname{Adj}(A)=\left[\begin{array}{ccc}
9 & 6 & -3 \\
-3 & -2 & 7 \\
6 & -2 & -2
\end{array}\right]^{7}=\left[\begin{array}{ccc}
9 & -3 & 6 \\
6 & -2 & -2 \\
-3 & 7 & -2
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|} \cdot \text { AoyA }
$$

$$
A^{-1}=\frac{1}{18}\left[\begin{array}{ccc}
9 & -3 & 6 \\
6 & -2 & -2 \\
-3 & 7 & -2
\end{array}\right]
$$

We have $x=A^{-1} B$

$$
\begin{aligned}
& x=\frac{1}{18}\left[\begin{array}{ccc}
9 & -3 & 6 \\
6 & -2 & -2 \\
-3 & 7 & -2
\end{array}\right]\left[\begin{array}{c}
7 \\
11 \\
1
\end{array}\right] \\
\Rightarrow & x=\frac{1}{18}\left[\begin{array}{cc}
63-33+6 \\
42-22-2 \\
-21+77-2
\end{array}\right] \\
\Rightarrow & x=\frac{1}{18}\left[\begin{array}{l}
36 \\
18 \\
54
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] \\
\Rightarrow & {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] }
\end{aligned}
$$

$\therefore x=2, y=1, z=3$ is the required solution ans.
Q.5) Solve the equations

$$
\frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10 ; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10 ; \frac{3}{x}-\frac{1}{y}+\frac{2}{z}=13
$$

Sol.5) The given equations are

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

$$
\begin{aligned}
& \frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10 \\
& \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10 \\
& \frac{3}{x}-\frac{1}{y}+\frac{2}{z}=13
\end{aligned}
$$

These equations can be written in matrix form

$$
\left[\begin{array}{ccc}
2 & -3 & 3 \\
1 & 1 & 1 \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
\frac{1}{x} \\
\frac{1}{y} \\
\frac{1}{z}
\end{array}\right]=\left[\begin{array}{l}
10 \\
10 \\
13
\end{array}\right]
$$

(or) $\mathrm{AX}=\mathrm{B}$

$$
\Rightarrow \mathrm{x}=\mathrm{A}^{-1} \mathrm{~B}
$$

Where $A=\left[\begin{array}{ccc}2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2\end{array}\right] ; \quad B=\left[\begin{array}{l}10 \\ 10 \\ 13\end{array}\right] ; \quad X=\left[\begin{array}{l}1 / x \\ 1 / y \\ 1 / z\end{array}\right]$

$$
\begin{aligned}
& |A|=2(2+1)+3(2-3)+3(-1-3)=6-3-12=-9 \\
& |A|=-9 \neq 0 \quad \therefore \text { system is consistent and unique solution }
\end{aligned}
$$

Cofactors

$$
\begin{aligned}
& c_{11}=3 \quad c_{12}=1 \quad c_{13}=-4 \\
& c_{21}=3 \quad c_{22}=-5 \quad c_{23}=-7 \\
& c_{31}=-6 \quad c_{32}=1 \quad c_{33}=5 \\
& \therefore \quad \operatorname{Adj} A=\left[\begin{array}{ccc}
3 & 3 & -6 \\
1 & -5 & 1 \\
-4 & -7 & 5
\end{array}\right] \\
& A^{2}=\frac{1}{|\mathrm{~A}|} \operatorname{Adj} \mathrm{A}=-\frac{1}{9}\left[\begin{array}{ccc}
3 & 3 & -6 \\
1 & -5 & 1 \\
-4 & -7 & 5
\end{array}\right]
\end{aligned}
$$

We have $x A^{-1} B$

$$
\begin{aligned}
& X=-\frac{1}{9}\left[\begin{array}{ccc}
3 & 3 & -6 \\
1 & -5 & 1 \\
-4 & -7 & 5
\end{array}\right]\left[\begin{array}{l}
10 \\
10 \\
13
\end{array}\right] \\
& X=-\frac{1}{9}\left[\begin{array}{c}
30+30-78 \\
10-50+13 \\
-40-70+65
\end{array}\right] \\
& {\left[\begin{array}{l}
1 / x \\
1 / y \\
1 / z
\end{array}\right]=-\frac{1}{9}\left[\begin{array}{l}
-18 \\
-27 \\
-45
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right] } \\
& \Rightarrow x=\frac{1}{2} ; y=\frac{1}{3} \text { and } z=\frac{1}{3} \text { is the required solution Ans...... }
\end{aligned}
$$

Q.6)

Find A^{-1}, where $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right]$. Hence solve the system of equations $x+$ $2 y-3 z=-4$,
$2 x+3 y+2 z=2$ and $3 x-3 y-4 z=11$
Sol.6)
We have,$A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right]$
$|A|=1(-12+6)-2(-8-6)-3(-6-9)=-6+28+45$
$|A|=67 \neq 0 \quad \therefore$ (A is Invertible |consistent \mid unique solution)
Cofactors

$$
\begin{array}{ccc}
c_{11}=-6 & c_{12}=14 & c_{13}=-15 \\
c_{21}=17 & c_{22}=5 & c_{23}=9 \\
c_{31}=13 & c_{32}=-8 & c_{33}=-1
\end{array}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

$\therefore \operatorname{Adj}(\mathrm{A})=\left[\begin{array}{ccc}-6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1\end{array}\right]$
Now $\quad \mathrm{A}^{-1}=\frac{1}{|A|} \cdot \operatorname{Adj} A$
$A^{-1}=\frac{1}{67}\left[\begin{array}{ccc}-6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1\end{array}\right]$
Given equation are

$$
\begin{aligned}
& x+y-3 z=-4 \\
& 2 x+3 y+2 z=2 \\
& 3 x-3 y-4 z=1
\end{aligned}
$$

These equation can be written in the form

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & -3 \\
2 & 3 & 2 \\
3 & -3 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-4 \\
2 \\
11
\end{array}\right]} \\
& \text { (or) } \mathrm{AX}=\mathrm{B} \Rightarrow \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}
\end{aligned}
$$

Where $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}-4 \\ 2 \\ 11\end{array}\right]$

$$
\begin{align*}
& X=\frac{1}{67}\left[\begin{array}{ccc}
-6 & 17 & 13 \\
14 & 5 & -8 \\
-15 & 9 & -1
\end{array}\right]\left[\begin{array}{c}
-4 \\
2 \\
11
\end{array}\right] \tag{-1}\\
& X=\frac{1}{67}\left[\begin{array}{c}
24+34+143 \\
-56+10-88 \\
60+18-11
\end{array}\right]=\frac{1}{67}\left[\begin{array}{c}
201 \\
-134 \\
67
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]}
\end{align*}
$$

$\therefore \mathrm{x}=3, \mathrm{y}=-2, \mathrm{z}=1$ is the required solution ans.
Q.7)

If $=\left[\begin{array}{ccc}1 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$. Find $A-1$ and hence solve the equation $x+2 y+z=4 ;-x+$
$y+z=0$ and $x-3 y+z=2$.
Sol.7)
We have $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$
Do yourself
$|A|=10 \neq 0 \quad \therefore$ (A is invertible)
$\operatorname{Adj} A=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \cdot \operatorname{Adj} A$
$A^{-1}=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
Given equation are
$x+2 y+z=4$
$-x+y+z=0$
$x-3 y+z=2$
\rightarrow the matrix of above equation is clearly the transpose of given matrix A
\therefore these equations can be written in the form
$\mathrm{A}^{\prime} \mathrm{X}=\mathrm{B} \quad$ where $\mathrm{B}=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right] ; X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
$\Rightarrow \mathrm{X}=\left(\mathrm{A}^{-1}\right)^{-1} \mathrm{~B}$
Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

$\Rightarrow X=\left(A^{-1}\right)^{-1} B$ $\left\{\right.$ By prop. $\left.\left(A^{-1}\right)^{-1}=\left(A^{-1}\right)^{1}\right\}$
$\Rightarrow X=\frac{1}{10}\left[\begin{array}{ccc}4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
$\Rightarrow X=\frac{1}{10}\left[\begin{array}{c}16+2 \\ 8-4 \\ 8+6\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}18 \\ 4 \\ 14\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}9 / 5 \\ 2 / 5 \\ 7 / 5\end{array}\right]$
$\Rightarrow x=\frac{9}{5} \quad, y=\frac{2}{5} \quad, \quad z=\frac{7}{5}$ is the req. solution ans..
Q.8)

Determine the product $\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$ and hence (or) use it to solve the
equations $x-y+z=4 ; x-2 y-2 z=9 ; 2 x+y+3 z=1$
Sol.8)
Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$
$C A=\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}-3 & -1\end{array}\right]$
$\Rightarrow C A=8 I$
Post multiply by A^{-1}
$\Rightarrow C A A^{-1}=8 I A^{-1}$
$\Rightarrow C I=8 A^{-1} \quad \ldots \ldots . .\left\{\begin{array}{c}\mathrm{AA}^{-1}=\mathrm{I} \\ \mathrm{IA}^{-1}=\mathrm{A}^{-1}\end{array}\right\}$
$\Rightarrow \mathrm{A}^{-1}=\frac{1}{8} C=\frac{1}{8}\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$
Given equation are

$$
\begin{aligned}
& x-y+z=4 \\
& x-2 y-2 z=9 \\
& 2 x+y+3 z=1
\end{aligned}
$$

There equation can be in the form
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & 2 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}4 \\ 9 \\ 1\end{array}\right]$
(or) $A X=B$

$$
\Rightarrow X=\mathrm{A}^{-1} B \quad \text { where } \mathrm{B}=\left[\begin{array}{l}
4 \\
9 \\
1
\end{array}\right] ; \mathrm{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$\Rightarrow X=\frac{1}{8}\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{l}4 \\ 9 \\ 1\end{array}\right]$
$\Rightarrow X=\frac{1}{8}\left[\begin{array}{c}24 \\ -16 \\ -8\end{array}\right]=\left[\begin{array}{c}3 \\ -2 \\ -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ -2 \\ -1\end{array}\right]$
$\Rightarrow x=3, y=-2$ and $z=-1$ is the req. solution ans.
Q.9)
$A=\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]$ find $A B$ and hence solve the equations
$x-2 y=0 ; 2 x+y+3 z=8 ;-2 y+x=7$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

StudiesToday

Sol.9)
$A B=\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right]\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
$\Rightarrow A B=11 I$
Pre by A^{-1}
$\Rightarrow A^{-1} \mathrm{AB}=11 \mathrm{~A}^{-1} \mathrm{I}$
$\Rightarrow I B=11 \mathrm{~A}^{-1}$
$\Rightarrow \mathrm{B}=11 \mathrm{~A}^{-1}$
$\Rightarrow \mathrm{A}^{-1}=\frac{1}{11} \mathrm{~B} 1=\frac{1}{11}\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]$
Given equations are

$$
\begin{gathered}
x-2 y=10 \\
2 x+y+3 z=7 \\
-2 y+0 y+z=7
\end{gathered}
$$

These equations can be written in the form

$$
A X=C \quad \Rightarrow \quad X=\mathrm{A}^{-1} C
$$

Where $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $C=\left[\begin{array}{c}10 \\ 8 \\ 7\end{array}\right]$
$X=\frac{1}{11}\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]\left[\begin{array}{c}10 \\ 8 \\ 7\end{array}\right]$
$\Rightarrow X=\frac{1}{11}\left[\begin{array}{c}70+16-42 \\ -20+8-21 \\ -40+16+35\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}44 \\ -33 \\ 11\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ -3 \\ 1\end{array}\right]$
$\therefore x=4, y=-3, z=1$ is the required solution ans.
Q.10) Show that system of equations is consistent and also find the solution
$2 x-y+3 z=5 ; 3 x+2 y-z=7 ; 4 x+5 y-5 z=9$
Sol.10) Given equation are
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y-5 z=9$
given equation can be written in the form
$A X=B \quad \Rightarrow X=A^{-1} B$
where $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 3 & 2 & -1 \\ 4 & 5 & -5\end{array}\right] ; \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ \& $B=\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]$
$|A|=0 \quad\{$ solution can be infinite many or no solution\}
Now $\operatorname{Adj} A=\left[\begin{array}{ccc}-5 & 10 & -5 \\ 11 & -22 & 11 \\ 7 & -14 & 7\end{array}\right]$
Now $(\operatorname{Adj} A) B=\left[\begin{array}{ccc}-5 & 10 & -5 \\ 11 & -12 & 11 \\ 7 & -14 & 7\end{array}\right]\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=0$
Since $|\mathrm{A}|=0$ also (AdjA). $\mathrm{B}=0$
\therefore System is consistent and Infinite many solutions
\rightarrow Put $z=k$ in first two equations, we get
$2 x-y=5-3 k$
$\ldots . .(k \in R)$
$3 x+2 y=7+k$
(or) $\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5-3 k \\ 7+k\end{array}\right]$
Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission

Downloaded from www.studiestoday.com

StudiesToday

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right] ; X=\left[\begin{array}{l}
x \\
y
\end{array}\right] ; B=\left[\begin{array}{c}
5-3 k \\
7+k
\end{array}\right] \\
& |A|=7 \text { and } A d j A=\left[\begin{array}{cc}
2 & 1 \\
-3 & 2
\end{array}\right] \\
& A^{-1}=\frac{1}{7}\left[\begin{array}{cc}
2 & 1 \\
-3 & 2
\end{array}\right] \\
& X=A^{-1} B \\
& X=\frac{1}{7}\left[\begin{array}{cc}
2 & 1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{c}
5-3 k \\
7+k
\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}
17-5 k \\
11 k-1
\end{array}\right] \\
& \therefore x=\frac{17-5 k}{7} ; y=\frac{11 k-1}{7} \text { and } z=k \quad \text { ans. }
\end{aligned}
$$

