Downloaded from www.studiestoday.com

Class XII Assignment On Continuity And Differentiability

Q.1. If
$$f(x) = \begin{cases} \frac{1-\sin^3 x}{3\cos^2 x}, & \text{if } x < \frac{\pi}{2} \\ a, & \text{if } x = \frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2x)^2}, & \text{if } x > \frac{\pi}{2} \end{cases}$$
 is continuous function at $x = \frac{\pi}{2}$, find a and b.

Q.2. If
$$y = (\sin x)^x + \sin^{-1} x - 2^{\sin x}$$
, find $\frac{dy}{dx}$

Q.3.If
$$x = a(\theta - \sin\theta)$$
, $y = a(1 + \cos\theta)$, find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{2}$.

Q.4.If
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2} ifx < 0 \\ a & \text{if } x = 0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}-4}} ifx > 0 \end{cases}$$
, is continuous at $x = 0$, determine the value of a.

Q.5. Prove that the function f given by f(x) = |x - 3|, $x \in R$ is continuous but not differentiable at x = 3.

Q.6. If
$$x = \cos t + \log \tan \frac{t}{2}$$
 and $y = \sin t$ then find $\frac{d^2y}{dx^2}at$ $t = \frac{\pi}{4}$.
Q.7. Find $\frac{dy}{dx}$ when $y = (\sin x)^{\cos x} + \frac{2x}{x^2 + x + 2}$.
Q.8. If $(\sin x)^{\cos y} = (\cos y)^{\sin x}$, find the value of dy/dx .

Q.7. Find
$$\frac{dy}{dx}$$
 when $y = (\sin x)^{\cos x} + \frac{2x}{x^2 + x + 2}$

Q.8. If
$$(\sin x)^{\cos y} = (\cos y)^{\sin x}$$
, find the value of dy/dx.

Q.9. If y = a sin x + b cos x, prove that
$$y^2 + (\frac{dy}{dx})^2 = a^2 + b^2$$
.

Q.10. Prove that
$$\frac{d}{dx} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right] = \sqrt{a^2 - x^2}.$$

Q.11. If
$$x = \tan(\frac{1}{a}\log y)$$
, Show that $(1+x^2)\frac{d^2y}{dx^2} + (2x-a)\frac{dy}{dx} = 0$.
Q.12. If $y = \cos^{-1}(\frac{3x+4\sqrt{1-x^2}}{5})$, Find $\frac{dy}{dx}$.

Q.12. If
$$y = cos^{-1}\left(\frac{3x+4\sqrt{1-x^2}}{5}\right)$$
, Find $\frac{dy}{dx}$

Q.13. If
$$y = \csc^{-1}x$$
, $x>1$, then show that $x(x^2-1)\frac{d^2y}{dx^2} + (2x^2-1)\frac{dy}{dx} = 0$. Q.14. Show that the function f defined as follows, is continuous at $x=2$ but not

Q.14. Show that the function f defined as follows, is continuous at
$$x = 2$$
 but not

differentiable there.
$$f(x) = \begin{cases} 3x - 2, 0 < x \le 1 \\ 2x^2 - x, 1 < x \le 2 \\ 5x - 4, x > 2 \end{cases}$$
Q.15. Find $\frac{dy}{dx}$ if $y = \sin^{-1}(x^2\sqrt{1 - x^2} - x\sqrt{1 - x^4})$

Q.15. Find
$$\frac{dy}{dx}$$
 if $y = \sin^{-1}(x^2\sqrt{1-x^2} - x\sqrt{1-x^4})$