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CBSE Class 12 Mathematics Differentiation 

Worksheet 

 Rolle’s And Mean Value Theorem 

Q1. If 𝑓 ; [−5 , 5]  →  𝑅 is differentiable and if f1(x) does not vanish anywhere, then show that 

𝑓(−5)  ≠  𝑓(5). 

Sol.1 Here a = -5 and b = 5 

let us assume that 𝑓(−5)  =  𝑓(5)  ….{i.e f(a) = f(b)} 

we are given ; 𝑓(𝑥) is differentiable function is continuous 

... f(x) is also continuous 

Hence the three conditions of Rolle's theorem are satisfied.   

... there must exists a value 

c ← (-5 , 5) such that f1(c) = 0 

But we are given that f1(x) does not vanish anywhere (i.e. f1(𝑥)  ≠  0) 

...  our assumption in wrong 

⇒ 𝑓(−5)  ≠  𝑓(5)              (Proved) 

 Miscellaneous – Type - Questions 

Q2. 
If 𝑦 = 𝑥 log (

𝑥

𝑎+𝑏𝑥
), show that 𝑥3.

𝑑2𝑦

𝑑𝑥
2 = (𝑥

𝑑𝑦

𝑑𝑥
− 𝑦)

2
. 

Sol.2 
          𝑦 = 𝑥 log (

𝑥

𝑎+𝑏𝑥
) 

⇒ 𝑦 = 𝑥[log𝑥 − log(𝑎 + 𝑏𝑥)] 

Diff w.r.t. x (product rule) 

          
𝑑𝑦

𝑑𝑥
= 𝑥 [

1

𝑥
−

𝑏

𝑎+𝑏𝑥
] + (log𝑥 − log(𝑎 + 𝑏𝑥)).1 

          
𝑑𝑦

𝑑𝑥
= 𝑥 [

𝑎+𝑏𝑥−𝑏𝑥

𝑥(𝑎+𝑏𝑥)
] + log𝑥 − log(𝑎 + 𝑏𝑥) 

          
𝑑𝑦

𝑑𝑥
=

𝑎

𝑎+𝑏𝑥
+ log𝑥 − log(𝑎 + 𝑏𝑥) 

Diff again 

          
𝑑2𝑦

𝑑𝑥2 =
(𝑎+𝑏𝑥)(0)−𝑎(𝑏)

(𝑎+𝑏𝑥)2 +
1

𝑥
−

𝑏

𝑎+𝑏𝑥
 

          
𝑑2𝑦

𝑑𝑥2 =
−𝑎𝑏

(𝑎+𝑏𝑥)2 +
1

𝑥
−

𝑏

𝑎+𝑏𝑥
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𝑑2𝑦

𝑑𝑥2 =
−𝑎𝑏𝑥+(𝑎+𝑏𝑥)2−𝑏(𝑎+𝑏𝑥)𝑥

𝑥(𝑎+𝑏𝑥)2  

          
𝑑2𝑦

𝑑𝑥2 =
−𝑎𝑏𝑥+𝑎2+𝑏2𝑥2+2abx−𝑎𝑏𝑥−𝑏2𝑥2

𝑥(𝑎+𝑏𝑥)2  

          
𝑑2𝑦

𝑑𝑥2 =
𝑎2

𝑥(𝑎+𝑏𝑥)2 

LHS  𝑥3.
𝑑2𝑦

𝑑𝑥2
= 𝑥3.

𝑎2

𝑥(𝑎+𝑏𝑥)2 =
𝑎2𝑥2

(𝑎+𝑏𝑥)2 

Now RHS   (𝑥.
𝑑𝑦

𝑑𝑥
− 𝑦)

2
 

         =    [𝑥 (
𝑎

𝑎+𝑏𝑥+log𝑥−log(𝑎+𝑏𝑥)
) − 𝑥log (

𝑥

𝑎+𝑏𝑥
)] 

         =    [
𝑎𝑥

𝑎+𝑏𝑥
+ 𝑥. log (

𝑥

𝑎+𝑏𝑥
) − 𝑥log (

𝑥

𝑎+𝑏𝑥
)]

2
 

         =     (
𝑎𝑥

𝑎+𝑏𝑥
)

2
=

𝑎2𝑥2

(𝑎+𝑏𝑥)2= LHS  Proved 

Q3. 
If 𝑦 = 1 − 𝑥 +

𝑥2

2!
−

𝑥3

3!
+

𝑥4

4!
+. . . . . . ∞ then write 

𝑑2𝑦

𝑑𝑥
2 in terms of y. 

Sol.3 Diff  w.r.t. x 

          
𝑑𝑦

𝑑𝑥
= −1 +

2x

2!
−

3x2

3!
+

4x3

4!
. . . . ∞ 

          
𝑑2𝑦

𝑑𝑥2 = −1 + 𝑥 −
𝑥2

2
+

𝑥3

6
. . . . . . ∞ 

          
𝑑2𝑦

𝑑𝑥2 = 1 −
2x

2
+

3x2

6
. . . . . ∞ 

          
𝑑2𝑦

𝑑𝑥2 = 1 −
𝑥

1!
+

𝑥2

2!
. . . . ∞ 

          
𝑑2𝑦

𝑑𝑥2 = 𝑦 Ans. 

Q4. 
If 𝑦 =  | 𝑙𝑜𝑔 𝑥 |  . Find 

𝑑2𝑦

𝑑𝑥2. 

Sol.4 Now point    log x < 0   when    0 < x < 1 

                     log x > 0   when    x > 1 

...    y  =  {–log x  ;  0 < x < 1} 

               {  log x  ;  x > 1} 

Diff w.r.t  x 

          
𝑑𝑦

𝑑𝑥
= {

−1

𝑥
; 0 < 𝑥 < 1}      
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                        {
1

𝑥
; 𝑥 > 1} 

Diff again 

          
𝑑2𝑦

𝑑𝑥2= {
1

𝑥2 ; 0 < 𝑥 < 1} 

                            {
−1

𝑥2 ; 𝑥 > 1}                Ans. 

Q5. 
If 𝑦 = 𝑓 (

2x−1

𝑥2+1
) and 𝑓1(𝑥) = sin(𝑥2). Find 

𝑑𝑦

𝑑𝑥
. 

Sol.5 
  𝑦 = 𝑓 (

2x−1

𝑥2+1
) 

Diff w.r.t.  x   
𝑑𝑦

𝑑𝑥
= 𝑓1 (

2x−1

𝑥2+1
) .

𝑑

𝑑𝑥
(

2x−1

𝑥2+1
) 

𝑑𝑦

𝑑𝑥
= sin (

2x−1

𝑥2+1
)

2
. [

(𝑥2+1)(2)−(2x−1)(2x)

(𝑥2+1)2 ]                                                                                                                      

                                             ......{since𝑓1(𝑥) = sin(𝑥2), 𝑓1 (
2x−1

𝑥2+1
) = sin (2x −

1

𝑡𝑥2 + 1)
2

}  

              
𝑑𝑦

𝑑𝑥
= sin (

2x−1

𝑥2+1
)

2
. [

2x2+2−4x2+2x

(𝑥2+1)2 ] 

              
𝑑𝑦

𝑑𝑥
= sin (

2x−1

𝑥2+1
)

2
. (

2+2x−2x2

(𝑥2+1)2 )       Ans. 
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