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CBSE Class 12 Mathematics Differentiation 

Worksheet 

 Continuity & Differentiability 

Q1. For what value of ƛis the function defined by 

f (x)  =      {ƛ(𝑥2 − 2x); if   x ≤  0} 

                 {4x + 1   ;  x < 0} 

continues at x = 0 ? what about continuity at x = 1 ? 

Sol.1 Continuity at x = 0 

LHL =  (𝜆(𝑥22x)) 

put x = 0 – h = –h  and  h → 0 

LHL =  (𝜆(ℎ2 + 2h)) = 𝜆(0 + 0) 

LHL = 0 

RHL (4x + 1) 

put x = 0 + h = h  and  h ← 0 

... RHL  =  (4h + 1) = 1 

RHL = 1 

since  LHL ≠ RHL 

...  f(x) is not continuous at x = 0  for any value of𝜆 

Continuity at x = 1 

here for LHL and RHL  ;  f(x) = 4x + 1 (same) 

LHL = (4x + 1) 

put x = 1 – h  and h → 0 

LHL =  (4(1 – h) + 1) = 4 + 1 

LHL = 5 

RHL  =  (4x + 1) 

put x = 1 + h  and  h → 0 

RHL = (4(1 + h) + 1) 

RHL = 4 + 1 = 5 

f(1) = 4 (1) + 1 

f(1) = 5 

f(x) is continuous at x = 1 ; irrespective of any value of 𝜆   Ans. 
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Q2. Discuss the continuity of f(x) given by 

f (x)  =    {𝑥2sin (
1

𝑥
) ; if𝑥 ≠ 0} 

                 {0   ;  x = 0} 

Sol.2 x2  polynomial function which is everywhere continuous 

and sin(1/x) is a sine function which is also everywhere continuous 

and product of two continuous function is also continuous 

when x ≠ 0 

f(x) = 𝑥2sin(1 𝑥⁄ ) 

...  f(x) is continuous for all x ≠ 0 

continuity at x = 0 

LHL = (𝑥2sin (
1

𝑥
)) 

put x = 0 – h = –h and  h → 0 

LHL =  ((– ℎ)2. sin (
−1

ℎ
)) 

        =   (−ℎ2. sin (
1

ℎ
)) 

        =   (−ℎ2. sin (
1

ℎ
)) 

        =   0sin (
1

0
) = 0 × (an oscillating number between -1 and 1) 

LHL = 0 

similarly RHL = 0             (Do Yourself) 

and  f(0) = 0 

... LHL= RHL = f(0) = 0 

... f(x) is also continuous at x = 0 

... f(x) is continuous everywhere (or) there is no point of discontinuity.     (Ans) 

Q3. Prove that the function f(x) = | x -1 | ∊  R is not differentiable at x = 1. 

Sol.3. We have   f(x)  = |x – 1|  =  {(x – 1)  ;  x > 1} 

                                            {– (x – 1)  ; x < 1} 

LHD = [
𝑓(𝑥)−𝑓(1)

𝑥−1
] 

         = [
−(𝑥−1)−(1−1)

𝑥−1
] 

         = [
−(𝑥−1)

(𝑥−1)
] 
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LHD = (–1) 

⇒ LHD = –1 

RHD = (
𝑓(𝑥)−𝑓(1)

𝑥−1
) 

         = (
(𝑥−1)−(1−1)

𝑥−1
) 

         = (
(𝑥−1)

(𝑥−1)
) 

RHD = (1) 

... RHD = 1 

...  LHD ≠ RHD       ...  f(x) is not Differentiable at x = 1           Ans. 

Q4. Prove that the greatest integer function f(x) = [x]  ;  0 < x < 3 is not  differentiable at x = 1 and x = 

2. 

Sol.4. We have     f(x) = [x]  ;  0 < x < 3 

f(x)  =  {0  ;  0 < x < 1} 

            {1  ;  1 ≤ x < 2} 

            {2  ;  2 ≤ x < 3 

Differentiability at x = 1 

LHD = (
𝑓(𝑥)−𝑓(1)

𝑥−1
) 

         = [
0−1

𝑥−1
] 

put x = 1 – h  and  h → 0 

...  LHD = (
−1

1−ℎ−1
) 

              = (
1

ℎ
) = ∞  ...  LHD = ∞ 

RHD = (
𝑓(𝑥)−𝑓(1)

𝑥−1
) 

         = (
1−1

𝑥−1
) 

         = (
0

𝑥−1
) 

RHD = 0 

since LHD ≠ RHD 

         ...  f(x) is not Differentiability at x = 1 

Similarly  :  check the Differentiability at x = 2 

Q5. If f(x) = | x |3. Show that f 11(x) exists for all x ∊  R and find it. 
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Sol.5 We have ,  f(x) = |x|3 

⇒ f(x) = |x| =  {x3   ;  x ≥ 0} 

                        {–x3  ; x < 0} 

LHD = (
𝑓(𝑥)−𝑓(0)

𝑥−0
) 

         = (
−𝑥3−0

𝑥
) 

         = (2x2) 

put x = 0 – h = –h  and  h → 0 

... LHD = (−(−ℎ)2) = 0 

... LHD = 0 

Now RHD = (
𝑓(𝑥)−𝑓(0)

𝑥−0
) 

                  = (
𝑥3−0

𝑥−0
) = (𝑥2) 

put x = 0 + h = h  and  h → 0 

... RHD = (h.2) = 0 

RHD = 0 

since LHD = RHD 

... f(x) is differentiable at x = 0 

... f1(x) exists and given by 

f1(x) =  {3x2  ;  x ≥ 0} 

            {–3x2   x < 0} 

LHD = (
𝑓1(𝑥)−𝑓1(0)

𝑥−0
) 

         = (−3x) 

put x = 0 – h = –h  and  h → 0 

... LHD = (3h) = 0 

...  LHD = 0 

Similarly  RHD = 0 

since LHD = RHD 

... f1(x) is differentiable at x = 0 

... f11(x) exists and given by 

f11(x) =  {6x  ;  x ≠ 0} 

             {–6  ; x < 0} 

Q6. Find the  values of 'a' and 'b' so that the function 
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f(x)    {x2 + 3x + a   ;    x ≤ 1} is differentiable 

          {bx + 2   ;    x > 1} 

at x = 1. 

Sol.6. Since f(x) is differentiable at x = 1 

...  f(x) is also continuous at x = 1 

continuity at x = 1 

RHL = (bx + 2) 

put x = 1 + h  and h → 0 

LHL =  (b(1 + h) + 2) 

LHL = b + 2 

LHL = (x2  + 3x + a) 

put x = 1 + h  and  h → 0 

... RHL = ((1 + h)2  + 3(1 + h) + a) 

RHL = 1 + 3 + a 

LHL = 4 + a 

f(1) = 1 + 3 + a = 4 + a 

we have , RHL = LHL = f(1) 

⇒ b + 2 = 4 + a = 4 + a 

⇒ b + 2 = 4 + a 

⇒ b = 2 + a          …...(1) 

Differentiability at x = 1 

LHD  = (
𝑓(𝑥)−𝑓(1)

𝑥−1
) 

          =  (
𝑥23x+𝑎−(1+3+𝑎)

𝑥−1
) 

          =  (
𝑥2+3x+𝑎−4−𝑎

(𝑥−1)
) 

          =  (
𝑥2+3x−4

(𝑥−1)
) 

          =  (
(𝑥+4)(𝑥−1)

(𝑥−1)
) 

put x = 1- h and h → 0 

LHD = (1 – h + 4) 

LHD = 5 

RHD  = (
𝑏𝑥+2−𝑓(1)

𝑥−1
) 
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          = (
𝑏𝑥+2−(4+𝑎)

𝑥−1
) 

          = (
𝑏𝑥+2−4−𝑎

𝑥−1
) 

          = (
𝑏𝑥−(2+𝑎)

𝑥−1
) 

          = (
𝑏𝑥−𝑏

𝑥−1
)           …...{from (1) b = a + 2} 

          = (
𝑏(𝑥−1)

(𝑥−1)
) 

RHL = b 

since f(x) is differentiable at x = 1 

...  LHD = RHD 

⇒ 5 = b 

...  b = 5 put in (1) 

    a = 3                     (Ans)         a = 3  &  b = 5 

Q7. Show that f(x) is discontinues at x = 0 

f(x)    {
𝑒1 𝑥⁄ −1

𝑒1 𝑥⁄ +1
; 𝑥 ≠ 0} 

            {0   ;    x = 0} 

Sol.7 
LHL = (

𝑒1 𝑥⁄ −1

𝑒1 𝑥⁄ +1
) 

put x = 0 – h = –h  and h → 0 

LHL = (
𝑒−1 𝑥⁄ −1

𝑒−1 ℎ⁄ +1
) 

        = (
𝑒−∞+1

𝑒∞+1
) 

        = 
0−1

0+1
            ….{𝑒∞ = 0} 

LHL = –1 

RHL = (
𝑒1 𝑥⁄ −1

𝑒1 𝑥⁄ +1
) 

put x = 0 + h  and  h → 0 

RHL = (
𝑒1 ℎ⁄ −1

𝑒1 ℎ⁄ +1
) 

        = (
1−𝑒−1 ℎ⁄

1+𝑒−1 ℎ⁄ )     …..{Divide by e1/h} 

        = 
1−𝑒−∞

1+𝑒−∞
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        = 
1−0

1+0
 

RHL = 1 

since LHL ≠ RHL  ...  f(x) is not continuous at x = 0.    (Ans) 

 Rolle’s And Mean Value Theorem 

Q8. Verify mean value theorem if f(x) = x3 – 5x2 – 3x in the interval a = 1 & b = 3 i.e. [1, 3]. Find all c  

(1 , 3) for which f1 (c) = 0. 

Sol.8 We have ,  f(x) = x3 – 5x2 – 3x  ;  x  [1 , 3] 

since f(x) is a polynomial function which is everywhere continuous. 

...  f(x) is continuous in [1 , 3] 

Diff  f(x) w.r.t. x 

f1(x) = 3x2 – 10x – 3 

clearly f1(x)exists for all x ← (1 , 3) 

  ...  f(x) is differentiable in (1 , 3) 

The two conditions all statistical  then there exists a value c ← (1 , 3) such that 

     f1(c) = 
𝑓(3)−𝑓(1)

3−1
 

⇒  3c2 − 10c − 3 =
−20

2
 

⇒  3c2 − 10c − 3 = −10 

⇒  3c2 − 10c + 7 = 0 

⇒  3c2 − 3c − 7c + 7 = 0 

⇒  3c(𝑐 − 1) − 7(𝑐 − 1) = 0 

       c = 1   ;   c = 7/3 

clearly c = 7/3 ← (1 , 3) 

...  mean value theorem is verified 

(ii)  given f1(c) = 0 

 ⇒  3c2 – 10c – 3 = 0   

a = 3  ;  b =  –10  ;  c =  –3 

c = 
10±√100+36

6
            {quadratic formula} 

c = 
10±√136

6
 

⇒ c =
10±11.7

6
 

c = 3.6  and  c = –0.28 
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clearly both value does not belong to (1 , 3) 

...  there is no value of c for which f1(c) = 0. 

Q9. Verify Rolle's theorem for the function f(x) =  √4 − 𝑥2;  on [-2 , 2]. 

Sol.9 We have ,    𝑓(𝑥) = √4 − 𝑥2 

→ for all  x ← [–2 , 2] , the limit of the function is equal to the value of the function 

i.e. limit f(x) = f(a)     where a ← [–2 , 2] 

... f(x) is continuous for all x ← [–2 , 2] 

Differentiable f(x) w.r.t. x 

f(x) = 
1

2√4−𝑥2
(−2x) = −

𝑥

√4−𝑥2
 

clearly f1(x) exists for all x  (–2 , 2) 

...  f(x) is differentiable for all x ← (–2 , 2) 

f(–2) = √4 − (−2)2 = √4 − 4 = 0 

f(2)   = √4 − 22 = √4 − 4 = 0 

... f(–2 ) = f(2) 

the there conditions of rolle's theorem are satisfied , then there exists a value 

c  (–2 , 2) such that f1(c) = 0 

Now  f(c) = 
−𝑐

√4−𝑐2
 

⇒  
−𝑐

√4−𝑐2
= 0 

⇒   –c = 0 

⇒     c = 0 

clearly  c = 0 ← (–2 , 2) 

hence Rolle's theorem is verified.  (Ans.) 

Q10. Discuss the “applicability” of Rolle's theorem on indicated intervals. 

Sol.10 (i)   f(x)  = 3 + (x – 2)2/3 on [1 , 3] 

       f1(x) = 0 +
2

3
(𝑥 − 2)−1 3⁄  

       f1(x) = 
2

3(𝑥−2)1 3⁄  

clearly  f1(x) does not exists when x = 2 

...  f(x)  is not differentiable in interval (1 , 3) 

hence Rolle's theorem not applicable 
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(ii)  f(x) = tan x on [0 ,𝜋] 

       clearly   tan (
𝜋

2
) = ∞ 

...  tan x is not continuous at 𝑥 =
𝜋

2
 

...  f(x) is not continuous on [0 ,𝜋] 

  Hence Rolle's theorem not applicable 

 

(ii)  f(x) = [x]  ;  x ← [-1 , 1] 

       f(–1) = [–1] = –1 

       and f(1) = [1] = 1 

   clearly f(–1) ≠ f(1) 

  hence Rolle's theorem not applicable 

 

(iv)  f(x) = |x|  ;  x ← [–1 , 1] 

      we have that modulus function is not Diff at x = 0 

...  f(x) is not Diff in (–1 , 1) 

Hence Rolle's theorem not applicable 

 

(v)  f(x) = {–4x + 5  ;  0 ≤ x ≤ 1} 

                 {2x – 3  ;  1 < x ≤ 2} 

here LHL = 1  &  RHL = –1       (Do yourself) 

clearly  LHL ≠ RHL 

...  f(x) is not continuous at x = 1 

... Rolle’s theorem not applicable  (Ans.) 
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