StudiesToday

CBSE Class 12 Mathematics Differentiation Worksheet

Continuity \& Differentiability

Q1. Find the value of ' a ' and ' b ' so that $\mathrm{f}(\mathrm{x})$ is continues at $\mathrm{x}=4$.

$$
\begin{aligned}
\mathrm{f}(\mathrm{x})= & \left\{\frac{x-4}{(x-4)}+a ; x<4\right\} \\
& \{a+b ; x=4\} \\
& \left\{\frac{x-4}{(x-4)}+b ; x>4\right\}
\end{aligned}
$$

Sol. 1 Redefining the given $\mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\left\{\frac{(x-4)}{-(x-4)}+a ; x<4\right\} \\
&\{\mathrm{a}+\mathrm{b} \quad ; \mathrm{x}=4\} \\
&\left\{\frac{(x-4)}{(x-4)}+b ; x>4\right\}
\end{aligned}
$$

since $\mathrm{x}<4 \quad \therefore|\mathrm{x}-4|=-(\mathrm{x}-4)$
and $\quad x>4 \quad \therefore|x-4|=(x-4)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\{-1+\mathrm{a} ; \mathrm{x}<4\}$
$\{\mathrm{a}+\mathrm{b} ; \quad \mathrm{x}=4\}$
$\{1+b ; x>4\}$
LHL $=(-1+\mathrm{a})$
$\therefore \mathrm{LHL}=-1+\mathrm{a}$
RHL $=(1+b)$
\therefore RHL $=1+b$
and $f(4)=a+b$
since $f(x)$ is continuous at $x=4$
\therefore LHL $=$ RHL $=\mathrm{f}(4)$
$\Rightarrow-1+\mathrm{a}=1+\mathrm{b}=\mathrm{a}+\mathrm{b}$
consider $\quad 1+\mathrm{h}=\mathrm{a}+\mathrm{b}$

$$
\mathrm{a}=1
$$

and

$$
\begin{aligned}
-1 & =a=a+b \\
b & =-1
\end{aligned}
$$

$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=4$ for $\mathrm{a}=1 \& \mathrm{~b}=-1$. Ans.
Q2. Find value of ' k ' so that $f(x)$ is continues at $x=0$.
$\mathrm{f}(\mathrm{x})=\left\{\frac{1-\cos (k x)}{x \sin x} ; x \neq 0\right\}$

$$
\{1 / 2 ; x=0\}
$$

Sol. 2

$$
\begin{aligned}
\text { LHL } & =\left[\frac{1-\cos (k x)}{x \sin x}\right] \\
\text { put } \mathrm{x} & =0-\mathrm{h}=-\mathrm{h} \text { and } \mathrm{h} \rightarrow 0 \\
\mathrm{LHL} & =\left[\frac{1-\cos (-k h)}{(-h) \sin (-h)}\right] \\
\text { LHL } & =\left[\frac{1-\cos (k h)}{h \sin x}\right] \quad \ldots \ldots\{\therefore \cos (-\mathrm{x})=\cos \mathrm{x}, \sin (-\mathrm{x})=\sin \mathrm{x}\} \\
& =\left[\frac{2 \sin ^{2}\left(\frac{k h}{2}\right)}{h \sin h}\right]
\end{aligned}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

$$
\begin{aligned}
& =\left[\frac{\frac{2 \sin ^{2}\left(\frac{k h}{2}\right)}{\frac{k^{2} h^{2}}{4}} \times \frac{k^{2} h^{2}}{4}}{h \frac{\sin h}{h} \times h}\right] \\
& =\frac{\left[\frac{\sin ^{2}(k h / 2)}{\frac{k^{2} h^{2}}{4}}\right]}{\left(\frac{\sin h}{h}\right)} \times \frac{2 \mathrm{k}^{2}}{4} \\
& =\frac{1}{1} \times \frac{k^{2}}{2}=\frac{k^{2}}{2}
\end{aligned}
$$

$\mathrm{LHL}=\frac{k^{2}}{2}$
similarly $\mathrm{RHL}=\frac{k^{2}}{2}$
$\mathrm{f}(0)=\frac{1}{2}$
since $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
$\therefore \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(0)$

$$
\begin{aligned}
& \frac{k^{2}}{2}=\frac{k^{2}}{2}=\frac{1}{2} \\
\Rightarrow & \frac{k^{2}}{2}=\frac{1}{2} \\
\Rightarrow & k^{2}=1 \\
& k= \pm 1
\end{aligned}
$$

$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$ for $k= \pm 1$ Ans
Q3.

$$
\begin{aligned}
\mathrm{f}(\mathrm{x})= & \left\{\frac{1-\cos (4 \mathrm{x})}{x^{2}} ; x<0\right\} \\
& \left\{\frac{\{\mathrm{a} ; \mathrm{x}=0\}}{\sqrt{16+\sqrt{x}-4}} ; x>0\right\}
\end{aligned}
$$

find value of 'a' so that $f(x)$ is continues at $x=0$.
Sol.3.

$$
\begin{aligned}
\text { LHL } & =\left[\frac{1-\cos (4 \mathrm{x})}{x^{2}}\right] \\
\text { put } \mathrm{x} & =0-\mathrm{h}=-\mathrm{h} \text { and } \mathrm{h} \rightarrow 0 \\
\text { LHL } & =\left[\frac{1-\cos (-4 \mathrm{~h})}{-h^{2}}\right] \\
& =\left[\frac{1-\cos (4 \mathrm{~h})}{h^{2}}\right] \\
& =\left(\frac{2 \sin ^{2}(2 \mathrm{~h})}{h^{2}}\right) \\
& =\left[\frac{2 \sin ^{2}(2 \mathrm{~h})}{4 \mathrm{~h}^{2}} \times 4\right] \\
& =8\left(\frac{\sin ^{2}(2 \mathrm{~h})}{4 \mathrm{~h}^{2}}\right) \\
& =8 \times 1=8 \quad \ldots \ldots .\left(\frac{\sin ^{2} x}{x^{2}}=1\right)
\end{aligned}
$$

\therefore LHL $=8$
$\mathrm{RHL}=\left(\frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}\right)$
\therefore RHL $=\left[\frac{\sqrt{h}}{\sqrt{16+\sqrt{h}}-4}\right]$
rationalize

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{RHL}=\left[\frac{\sqrt{h}}{\sqrt{16+\sqrt{h}}-4} \times \frac{(\sqrt{16+\sqrt{h}}+4)}{(\sqrt{16+\sqrt{h}}+4)}\right] \\
&=\left[\frac{\sqrt{h}(\sqrt{16+\sqrt{h}}+4)}{16+\sqrt{h}-16}\right] \\
&=[\sqrt{16+\sqrt{h}}+4] \\
&=4+4 \\
& \text { RHL }=8 \\
& \text { Now } \mathrm{f}(0)=\mathrm{a} \\
& \text { since } \mathrm{f}(\mathrm{x}) \text { is continuous at } \mathrm{x}=0 \\
& \text { LHL }=\text { RHL }=\mathrm{f}(0) \\
& \Rightarrow 8=8=\mathrm{a} \quad \ldots \mathrm{a}=8 \\
& \therefore \mathrm{f}(\mathrm{x}) \text { is can't at } \mathrm{x}=0 \text { for } \mathrm{a}=8 \text { Ans. }
\end{aligned}
\end{aligned}
$$

Q4. Determine the value of a, b and c so that the function is continues at $\mathrm{x}=0$.

$$
\begin{aligned}
\mathrm{f}(\mathrm{x})= & \left\{\frac{\sin (a+1) x+\sin x}{(x)} ; x<0\right\} \\
& \left\{\frac{\mathrm{c} \quad ; \quad \mathrm{x}=0\}}{b x^{3 / 2}} ; x>0\right\}
\end{aligned}
$$

Sol. 4
LHL $=\left[\frac{\sin (a+1) x+\sin x}{x}\right]$
put $\mathrm{x}=0-\mathrm{h}=-\mathrm{h}$ and $\mathrm{h} \rightarrow 0$
LHL $=\left[\frac{\sin (a+1)(-h)+\sin (-h)}{-h}\right]$
$=\left[\frac{-\sin (a+1) h-\sin h}{-h}\right]$
$=\left[\frac{\sin (a+1)+\sin h}{h}\right]$
$=\left(\frac{\sin (a+1) h}{h}+\frac{\sin h}{h}\right)$
$=\left(\frac{\sin (a+1) h}{h(a+1)} \times(a+1)+\frac{\sin h}{h}\right)$
$=(a+1)\left(\frac{\sin (a+1) h}{h(a+1)}\right)+\left(\frac{\sin h}{h}\right)$
$=(a+1) 1+1 \quad \ldots \ldots\left\{\because\left(\frac{\sin x}{h}\right)=1\right\}$
$\mathrm{LHL}=\mathrm{a}+2$
RHL $=\left(\frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{3 / 2}}\right)$
put $\mathrm{x}=0+\mathrm{h}=\mathrm{h}$ and $\mathrm{h} \rightarrow 0$
$\mathrm{RHL}=\left(\frac{\sqrt{x+b h^{2}}-\sqrt{h}}{b h^{3 / 2}}\right)$
$=\left(\frac{\sqrt{h} \sqrt{1+b h}-\sqrt{h}}{b h \sqrt{h}}\right)$
$=\left(\frac{\sqrt{h} \sqrt{1+b h}-1}{b h \sqrt{h}}\right)$
Rationalize

$$
\begin{aligned}
& =\left(\frac{(\sqrt{1+b h}-1)(\sqrt{1+b h}+1)}{b h(\sqrt{1+b h}+1)}\right) \\
& =\left(\frac{1+b h-1}{b h(\sqrt{1+b h}+1)}\right) \\
& =\left(\frac{1}{\sqrt{1+b h}+1}\right)=\frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

$\mathrm{RHL}=\frac{1}{2}$
$\mathrm{f}(0)=\mathrm{c}$
since $f(x)$ is continuous at $x=0$

```
\(\therefore \quad \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(0)\)
    \(\Rightarrow a+2=\frac{1}{2}=c\)
    \(\Rightarrow \quad a+2=\frac{1}{2}\) and \(c=\frac{1}{2}\)
\(a=-\frac{3}{2}\) and \(\quad c=\frac{1}{2} \quad\) and \(\quad \mathrm{b}=\mathrm{R}-\{0\}\)
```

\qquad $\{\because$ for $b=0: f(x)$ does not exist $\}$. Ans.

Q5. If the function $f(x)$ is continues at $x=0$. Find the value of k.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\left\{\frac{\log (1+a x)-\log (1-b x)}{(x)} ; x \neq 0\right\} \\
&\{\mathrm{k} ; \mathrm{x}=0\}
\end{aligned}
$$

Sol. 5 RHL $=\left[\frac{\log (1+a x)-\log (1-b x)}{x}\right]$

$$
\text { put } \mathrm{x}=0+\mathrm{h} \text { and } \stackrel{\sim}{\mathrm{h}} \rightarrow 0
$$

$$
\mathrm{RHL}=\left[\frac{\log (1+a h)-\log (1-b h)}{h}\right]
$$

$$
=\left[\frac{\log (1+a h)}{h}-\frac{\log (1-b h)}{h}\right]
$$

$$
=\left[\frac{\log (1+a h)}{a h} \times a-\frac{\log (1+(-b h))}{(-b h)} \times(-b)\right]
$$

$$
=a\left(\frac{\log (1+a h)}{a h}\right)+b\left(\frac{\log (1+(-b h))}{(-b h)}\right)
$$

$$
=a(1)+b(1)
$$

RHL $=a+b$

$$
\left(\frac{\log (1+x)}{x}=1\right)
$$

$\mathrm{f}(0)=\mathrm{k}$
since $f(x)$ is continuous at $x=0$
$\therefore \mathrm{RHL}=\mathrm{f}(0) \quad \Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{k}$
$\therefore \mathrm{k}=\mathrm{a}+\mathrm{b} \quad$ Ans.
Q6. Prove that the greatest integer function $[\mathrm{x}]$ is discontinues at all integral points.
Sol. 6 We have $f(x)=(x)$
let k be only integer i.e. $\mathrm{k} \leftarrow \mathrm{z}$
then $\mathrm{f}(\mathrm{x})=[\mathrm{x}]=\{\mathrm{k}-1$; if $\mathrm{k}-1 \leq \mathrm{x}<\mathrm{k}\}$
$\mathrm{LHL}=(\mathrm{k}-1)$
LHL $=\mathrm{k}-1$
RHL $=(k)$
$\mathrm{RHL}=\mathrm{k}$
and $f(k)=k$
since $\mathrm{LHL}=\mathrm{RHL} \therefore \mathrm{f}(\mathrm{x})$ is discontinuous at ' k ' i.e. all integral points $(\because \mathrm{k} \leftarrow \mathrm{z})$. Ans.
Q7. Show that the function $g(x)=x-[x]$ is discontinues at all integral points.
Sol. 7 We have $g(x)=x-[x]$
let k be any integer i.e $\mathrm{k} \leftarrow \mathrm{z}$
$g(x)=\{x-(k-1) ;$ if $k-1 \leq x<k\}$ $\{x-k ;$ if $k \leq x<k+1\}$
LHL $=(x-(k-1)$
put $x=k-h=-h \& h \rightarrow 0$
$\ldots \mathrm{LHL}=(\mathrm{k}-\mathrm{h}-\mathrm{k}+1)$
Copyright © www.studiestoday.com All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

LHL $=-\mathrm{h}+1$
RHL $=(\mathrm{x}-\mathrm{k})$
put $\mathrm{x}=\mathrm{k}+\mathrm{h}$ \& $\mathrm{h} \rightarrow 0$
\ldots RHL $=(\mathrm{k}+\mathrm{h}-\mathrm{k})$
RHL $=0$
$\mathrm{f}(\mathrm{x})=\mathrm{k}-\mathrm{k}=0$
since $\mathrm{LHL} \neq \mathrm{RHL} \ldots \mathrm{f}(\mathrm{x})$ is discontinuous at all integral points ($\ldots \mathrm{k} \leftarrow \mathrm{z}$). Ans.
Q8. Discus the continuity of the function $f(x)=|x-3|-|x-1|$
Sol. 8 We have $f(x)=|x-3|-|x-1|$
first arrange modules so that their critical points are in ascending order.
i.e $\quad f(x)=-|x-1|+|x-3|$
$f(x)=\{+(x-1)-(x-3) ; x<1\}$
$\{-1(x-1)-(x-3) ; 1 \leq x<3\}$
$\{-(x-1)+(x-3) ; x \geq 3\}$
$f(x)=\{+2 ; x<1\}$
$\{-2 x+4 ; 1 \leq x<3\}$ $\{-2 ; x \geq 3\}$
when $\mathrm{x}<1$
$f(x)=2$ which is a constant function, which is everywhere continuous. $\therefore f(x)$ is continuous when $\mathrm{x}<1$.
when $1<x<3$
$f(x)=-2 x+4$ which is a polynomial function, which is everywhere continuous. $f(x)$ is
continuous when
$1<\mathrm{x}<3$.
when $x>3$
$f(x)=-2$ which is a constant function, which is everywhere continuous. $\therefore f(x)$ is continuous when $\mathrm{x} \rightarrow 3$
Now Continuity at $\mathrm{x}=1$
$\mathrm{LHL}=(2) \quad \Rightarrow \mathrm{LHL}=2$
RHL $=(-2 x+4)$
put $\mathrm{x}=1+\mathrm{h} \& \mathrm{~h} \rightarrow 0$
\therefore RHL $=(-2(1+\mathrm{h})+4)$
RHL $=-2+4=2$
$\mathrm{f}(1)=-2(1)+4=2$
LHL $=$ RHL $=\mathrm{f}(1)=2$
$\therefore \mathrm{f}(\mathrm{x})$ is also continuous at $\mathrm{x}=1$
Now continuity at $x=3$
LHL $=(-2 x+4)$
put $\mathrm{x}=3-\mathrm{h}$ and $\mathrm{h} \rightarrow 0$
LHL $=(-2(3-\mathrm{h})+4)$
\Rightarrow LHL $=-6+4=-2$
$\mathrm{RHL}=(-2)$
$f(3)=-2$
$\mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(3)=-2$
$\therefore \mathrm{f}(\mathrm{x})$ is also continuous at $\mathrm{x}=3$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous everywhere (or) there is no point of discontinuity.
(Ans.)

Q9. Show that the function $f(x)|1-x+|x|$ is a continues function .
Sol. 9 Let $g(x)=|-x+|x|$
and $h(x)=|x|$
Now $(\log)(x)=h(g(x))$
Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday

$$
\begin{align*}
= & h(1-x+|x|) \\
(\log)(x) & =|1-x+|x| \\
\Rightarrow(\log)(x) & =f(x) \quad \ldots(1) \tag{1}
\end{align*}
$$

Now $\mathrm{h}(\mathrm{x})=|\mathrm{x}|$ is sum of polynomial and modulus function and sum of two continuous functions is also continuous. $\therefore \mathrm{g}(\mathrm{x})$ is continuous everywhere and composite function of two continuous function is also continuous here $\mathrm{f}(\mathrm{x})$ being a composite function of $\mathrm{h}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x}) \quad \ldots . .\{$ from (i) is also continuous $\}$ Ans.

Q10. Examine that $\sin |x|$ is a continues function.
Sol. 10 Let $f(x)=\sin |x|$
again let $g(x)=|x|$ and $h(x)=\sin x$
Now, $(\operatorname{hog})(\mathrm{x})=h((g(x))$

$$
=h(|x|)
$$

$=\sin |x|$
$\operatorname{hog}(x)=f(x)$
$g(x)=|x|$; which is a modulus function and it is continuous everywhere. $h(x)=\sin x$; is a sine function and it is continuous everywhere.
and composite function of two continuous function is also continuous. here, $f(x)$ being a composite function of $g(x)$ and $h(x)$ is a also continuous.

