Downloaded from www.studiestoday.com

StudiesToday

CBSE Class 12 Mathematics Differentiation
 Worksheet
 Inverse Trigonometric Diff.

Q1. $y=\cos ^{-1}\left(\frac{2 \mathrm{x}-3 \sqrt{1-x^{2}}}{\sqrt{13}}\right)$. Find $\frac{d y}{d x}$.
Sol. 1 We have, $y=\cos ^{-1}\left(\frac{2 x-3 \sqrt{1-x^{2}}}{\sqrt{13}}\right)$
put $x=\sin \theta$

$$
\begin{aligned}
& \quad y=\cos ^{-1}\left(\frac{2 \sin \theta-3 \cos \theta}{\sqrt{13}}\right) \\
& \Rightarrow \quad y=\cos ^{-1}\left(\frac{2}{\sqrt{13}} \sin \theta-\frac{3}{\sqrt{13}} \cdot \cos \theta\right) \\
& \text { let } \quad \sin \alpha=\frac{2}{\sqrt{13}} \& \cos \beta=\frac{3}{\sqrt{13}} \quad \cdots \cdot .\left\{\cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{\frac{1-4}{13}}=\frac{3}{\sqrt{13}}\right\} \\
& \Rightarrow \quad y=\cos ^{-1}(\sin \alpha \cdot \sin \theta-\cos \alpha \cdot \cos \theta) \\
& \Rightarrow \quad y=\cos ^{-1}(-(\cos \theta \cdot \cos \alpha-\sin \theta \cdot \sin \alpha)) \\
& \Rightarrow \quad y=\cos ^{-1}(-\cos (\theta+\alpha)) \\
& \Rightarrow \quad y=\pi-\cos ^{-1}(\cos (\theta+\alpha)) \\
& \Rightarrow \quad y=\pi-(\theta+\alpha) . \\
& \Rightarrow \quad y=\pi-\sin ^{-1} x \sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)\{\operatorname{Constant}\}
\end{aligned}
$$

Diff w.r.t x

$$
\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}} \quad \text { Ans. }
$$

Q2.

$$
y=\sin ^{-1}\left(\frac{2^{x+1}}{1+4^{x}}\right) . \quad \text { Find } \frac{d y}{d x}
$$

Sol. 2

$$
y=\sin ^{-1}\left(\frac{2^{x+1}}{1+4^{x}}\right)
$$

$\Rightarrow y=\sin ^{-1}\left(\frac{2.2^{x}}{1+\left(2^{x}\right)^{2}}\right)$
Put $2^{x}=\tan \theta$
$\Rightarrow y=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow y=\sin ^{-1}(\sin (2 \theta))$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

$$
\begin{aligned}
& \Rightarrow y=2 \theta \\
& \Rightarrow y=2 \tan ^{-1}\left(2^{x}\right)
\end{aligned}
$$

Diff w.r.t. x
$\Rightarrow \frac{d y}{d x}=2 \cdot \frac{1}{1+\left(2^{x}\right)^{2}} \cdot 2^{x} \cdot \log _{2} \ldots \ldots \ldots\left\{\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a\right\}$
$\Rightarrow \frac{d y}{d x}=\frac{2^{x+1} \cdot \log _{2}}{1+4^{x}} \quad$ Ans
Q3. $y=\sin ^{-1}\left(x \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{2}}\right)$. Find $\frac{d y}{d x}$.
Sol. 3 We have, $y=\sin ^{-1}\left(x \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{2}}\right)$
put $\quad \mathrm{x}=\sin \mathrm{A}$ and $\sqrt{x}=\sin \mathrm{B}$
$\Rightarrow \quad y=\sin ^{-1}\left(\sin A \sqrt{1-\sin ^{2} B}-\sin B \sqrt{1-\sin ^{2} A}\right)$
$\Rightarrow \quad y=\sin ^{-1}(\sin A \cdot \cos B-\sin B \cdot \cos A)$
$\Rightarrow \quad y=\sin ^{-1}(\sin (A-B))$
$\Rightarrow \quad y=A-B$
$\Rightarrow \quad y=\sin ^{-1} x-\sin ^{-1} \sqrt{x}$
Diff w.r.t. x

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x}} \cdot \frac{1}{\sqrt{2 \sqrt{x}}} \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{2 \sqrt{x-x^{2}}} \text { Ans. }
\end{aligned}
$$

Diff. Of A Function w.r.t. Another Function

Q4. Diff. $\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$ w.r.t. $\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$.
Sol. 4

$$
\begin{array}{ll}
\text { Let } u=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right) & \text { put } x=\sin \theta \\
\text { put } x=\sin \theta & \Rightarrow v=\cos ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \\
\Rightarrow u=\tan ^{-1}\left(\frac{\sqrt{1-\sin ^{2}} \theta}{\sin \theta}\right) & \Rightarrow v=\cos ^{-1}(2 \sin \theta \cdot \cos \theta) \\
\Rightarrow u=\tan ^{-1}\left(\frac{\cos \theta}{\sin \theta}\right) & \Rightarrow v=\cos ^{-1}(\sin (2 \theta)) \\
\Rightarrow u=\tan ^{-1}(\cot \theta) & \Rightarrow v=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right) \\
& \Rightarrow v=\frac{\pi}{2}-2 \theta
\end{array}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

$$
\begin{aligned}
& \Rightarrow u=\tan ^{-1}\left(\tan \left(\frac{\pi}{2}-\theta\right)\right) \\
& \Rightarrow u=\frac{\pi}{2}-\theta \\
& \Rightarrow u=\frac{\pi}{2}-\sin ^{-1} x
\end{aligned}
$$

Diff w.r.t. x
$\Rightarrow v=\frac{\pi}{2}-2 \sin ^{-1} x$
Diff w.r.t.

$$
\frac{d v}{d x}=0-\frac{2}{\sqrt{1-x^{2}}}=-\frac{2}{\sqrt{1-x^{2}}}
$$

Now $\frac{d u}{d x}=\frac{d u / d x}{d v / d x} \Rightarrow \frac{d u}{d v}=\frac{\frac{-1}{\sqrt{1-x^{2}}}}{\frac{-2}{\sqrt{1-x^{2}}}}=\frac{1}{2}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-1}{\sqrt{1-x^{2}}} \\
\text { let } \quad v & =\cos ^{-1}\left(2 \mathrm{x} \sqrt{1-x^{2}}\right)
\end{aligned}
$$

Q5 Diff $\sin ^{-1}\left(2 a x \sqrt{1-a^{2} x^{2}}\right)$ w.r.t. $\sqrt{1-a^{2} x^{2}}$.
Sol. 5 Let $u=\sin ^{-1}\left(2 a x \sqrt{1-a^{2} x^{2}}\right)$
put $a x=\sin \theta$

$$
u=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)
$$

$\Rightarrow u=\sin ^{-1}(2 \sin \theta \cdot \cos \theta)$
$\Rightarrow u=\sin ^{-1}(\sin (2 \theta))$
$\Rightarrow u=2 \theta$
$\Rightarrow u=2 \sin ^{-1}(a x)$
Diff w.r.t. x

$$
\begin{aligned}
\frac{d u}{d x} & =\frac{2}{\sqrt{1-a^{2} x^{2}}} \cdot(a)=\frac{2 a}{\sqrt{1-a^{2} x^{2}}} \\
\text { let } \quad v & =\sqrt{1-a^{2} x^{2}}
\end{aligned}
$$

Diff w.r.t. x

$$
\frac{d v}{d x}=\frac{1}{2 \sqrt{1-a^{2} x^{2}}}\left(-2 a^{2} x\right)
$$

$$
\frac{d v}{d x}=\frac{-a^{2} x}{\sqrt{1-a^{2} x^{2}}}
$$

Now $\frac{d u}{d v}=\frac{d u / d x}{d v / d x}=\frac{\frac{2 \mathrm{a}}{\sqrt{1-a^{2} x^{2}}}}{\frac{-a^{2} x}{\sqrt{1-a^{2} x^{2}}}}$
$\Rightarrow \frac{2 \mathrm{a}}{-a^{2} x}$
$\therefore \frac{d u}{d v}=\frac{-2}{a x}$ Ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

Q6. Diff. $\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)$ w.r.t. $\sec ^{-1} \mathrm{x}$.
Sol. 6 Let $u=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)$

$$
\begin{aligned}
& \Rightarrow u=\tan ^{-1}\left(\frac{\sin \left(\frac{\pi}{2}-x\right)}{1+\cos \left(\frac{\pi}{2}-x\right)}\right) \\
& \Rightarrow u=\tan ^{-1}\left(\frac{2 \sin \left(\frac{\pi}{4}-\frac{x}{2}\right) \cdot \cos \left(\frac{\pi}{4}-\frac{x}{2}\right)}{2 \cos ^{x}\left(\frac{\pi}{4}-\frac{x}{2}\right)}\right) \\
& \Rightarrow u=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right) \\
& \Rightarrow u=\frac{\pi}{4}-\frac{x}{2}
\end{aligned}
$$

Diff w.r.t. x

$$
\frac{d u}{d x}=-\frac{1}{2}
$$

let $\quad v=\sec ^{-1} x$
Diff w.r.t. x

$$
\begin{aligned}
\frac{d v}{d x} & =\frac{1}{x \sqrt{x^{2}-1}} \\
\text { Now } \frac{d u}{d v} & =\frac{d u / d x}{d v / d x}=\frac{-1 / 2}{\frac{1}{x \sqrt{x^{2}-1}}} \\
\frac{d u}{d v} & =\frac{-x \sqrt{x^{2}-1}}{2} \text { Ans. }
\end{aligned}
$$

Q7. If $f(x)$ is continues at $\mathrm{x}=1$. Find the values of a and b .
$f(x)=\{3 a x+b ; x>1\}$

$$
\begin{aligned}
& \{3 a x+b ; x=1\} \\
& \{5 a x-2 b ; x<1\}
\end{aligned}
$$

Sol. 7 LHL $=(5 a x-2 b)$
Put $x=1-h$ and $h \rightarrow 0$
LHL $=(5 a(1-h)-2 b)$
\Rightarrow LHL $=5 a-2 b$
RHL $=(3 a x+b)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

put $\mathrm{x}=1+\mathrm{h}$ and $\mathrm{h} \rightarrow 0$
RHL $=[3 a(1+h)+b]$
$\Rightarrow \mathrm{RHL}=[3 a+b]$
Now $f(1)=11$
Since $\mathrm{f}(\mathrm{x})$ is continuous at $x=1$
\therefore LHL $=$ RHL $=\mathrm{f}(1)$
$\Rightarrow 5 a-2 b=3 a+b=11$
consider $5 a-2 b=11$
and $3 a+b=11$
solving these equations we get
$\mathrm{a}=3$ and $\mathrm{b}=2$
$\therefore f(x)$ is continuous at $\mathrm{x}=1$ for $a=3 \& b=2$
Q8. The function $f(x)$ is continues on $[0,8]$. find the value of ' a ' and ' b '.

$$
\begin{aligned}
f(x)= & \left\{x^{2}+a x ; 0 \leq x<2\right\} \\
& \{3 x+2 ; 2 \leq x \leq 4\} \\
& \{2 a x+5 b ; 4<x \leq 1\}
\end{aligned}
$$

Sol. 8 Since $f(x)$ is also continuous in $[0,8]$
$\therefore \mathrm{f}(\mathrm{x})$ is also continuous at $\mathrm{x}=2$ and $\mathrm{x}=4$
continuously at $x=2$
LHL $=\left(x^{2}+a x+b\right)$
put $\mathrm{x}=2-\mathrm{h}$ and $\mathrm{h} \rightarrow 0$
\therefore LHL $=\left[(2-h)^{2}+a(2-h)+b\right]$
LHL $=4+2 \mathrm{a}+\mathrm{b}$
RHL $=(3 x+2)$
put $\mathrm{x}=2+\mathrm{h} \& \mathrm{~h} \rightarrow 0$
$\Rightarrow \mathrm{RHL}=(3(2+\mathrm{h})+2)$
\Rightarrow RHL $=8$
$f(2)=3(2)+2=8$
we have, $L H L=R H L=f(2)$

$$
\begin{align*}
& \Rightarrow 4+2 a+b=8=8 \\
& \Rightarrow 2 a+b=4 \tag{1}
\end{align*}
$$

continuity at $x=4$
LHL $=(3 x+2)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

put $\mathrm{x}=4-\mathrm{h}$ and $\mathrm{h} \rightarrow 0$
LHL
$=(3(4-h)+2)$
$\therefore \mathrm{LHL}=14$
RHL $=(2 \mathrm{ax}+5 \mathrm{~b})$
put $\mathrm{x}=4+\mathrm{h}$ and $\mathrm{h} \rightarrow 0$
\Rightarrow RHL $\quad(2 \mathrm{a}(4+\mathrm{h})+5 \mathrm{~b})$
\Rightarrow RHL $=8 \mathrm{a}+5 \mathrm{~b}$
Now $f(4)=3(4)+2=14$
we have, $\quad L H L=R H L=f(4)$
$\Rightarrow 14=8 a+5 b=14$
$\Rightarrow 8 a+5 b=14$
solving (1) \& (2)
we get $a=3 \& b=-2$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous in $[0,8]$ for $\mathrm{a}=3 \& \mathrm{~b}=-2$
Q9 If $f(x)$ is continues at $x=2$. Find the value of a and b.

$$
\begin{aligned}
\mathrm{f}(\mathrm{x})= & \left\{\frac{1-\sin ^{x}}{3 \cos ^{2} x} ; x<\frac{\pi}{2}\right\} \\
& \left\{a ; x=\frac{\pi}{2}\right\} \\
& \left\{\frac{b(1-\sin x)}{(\pi-2 \mathrm{x})^{2}} ; x>\frac{\pi}{2}\right\}
\end{aligned}
$$

Sol. 9
$\mathrm{LHL}=\left[\frac{1-\sin ^{3} x}{3 \cos ^{2} x}\right]$
put $x=\frac{\pi}{2}-h$ and $h \rightarrow 0$
\therefore LHL $=\left[\frac{1-\sin ^{3}\left(\frac{\pi}{2}-h\right)}{3 \cos ^{2}\left(\frac{\pi}{2}-h\right)}\right]$

$$
=\left[\frac{1-\cos ^{3} h}{3 \sin ^{2} h}\right]
$$

$$
=\left[\frac{(1-\cos h)\left(1+\cos ^{2} h+\cos h\right)}{3\left(1+\cos ^{2} h\right)}\right] \quad \ldots \ldots . .\left\{a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)\right\}
$$

$$
=\left[\frac{(1-\cos h)\left(1+\cos ^{2} h+\cos h\right)}{3(1+\cos h)(1-\cos h)}\right]
$$

$$
=\left[\frac{1+\cos ^{2} h \cos h}{3(1+\cos h)}\right]
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

LHL $=\frac{1+1+1}{3(1+1)}=\frac{1}{2}$
RHL $=\left[\frac{b(1-\sin x)}{(\pi-2 \mathrm{x})^{2}}\right]$
put $\quad x=\frac{\pi}{2}+h \& h \rightarrow 0$
RHL $=\left[\frac{b\left(1-\sin \left(\frac{\pi}{2}+h\right)\right)}{\left(\pi-2\left(\frac{\pi}{2}+h\right)^{2}\right)}\right]$
$=\left[\frac{b(1-\cos h)}{(\pi-\pi-2 h)^{2}}\right]$
$=\left(\frac{b .2 \sin 2(h / \pi)}{4 \mathrm{~h}^{2}}\right)$
$\Rightarrow \mathrm{RHL}=\left[\frac{2 \mathrm{~b} \cdot \sin ^{2}(h / 2)}{4 \frac{h^{2}}{4} \times 4}\right]$

$$
=\frac{2 \mathrm{~b}}{16}\left(\frac{\sin ^{2}(h / 2)}{h^{2} / 4}\right)
$$

RHL $=\frac{b}{8} \quad \ldots \ldots\left\{\left(\frac{\sin ^{2} x}{x^{2}}\right)=1\right\}$

$$
f\left(\frac{\pi}{2}\right)=a
$$

since $f(x)$ is continuous at $x=2$

$$
\begin{aligned}
& \therefore \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(2) \\
& \quad \Rightarrow \frac{1}{2}=\frac{b}{8}=a \\
& \quad \Rightarrow b=4 \mathrm{and} a=\frac{1}{2}
\end{aligned}
$$

$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=2$ if $a=\frac{1}{2}$ and $b=4$ Ans.
Q10. Find the value of ' a ' so that $\mathrm{f}(\mathrm{x})$ is continues at $x=0$.

$$
\begin{aligned}
\mathrm{f}(\mathrm{x})= & \left\{a \sin \left(\frac{\pi}{2} x+\frac{\pi}{2}\right) ; x \leq 0\right\} \\
& \left\{\frac{\tan x-\sin x}{x^{3}} ; x>0\right\}
\end{aligned}
$$

Sol. 10
LHL $=\left[a \sin \frac{\pi}{2}(x+1)\right]$
put $\mathrm{x}=0-\mathrm{h}=-\mathrm{h}$ and $\mathrm{h} \rightarrow 0$
\therefore LHL $=$

$$
=a \sin \left(\frac{\pi}{2}\right)
$$

LHL $=\mathrm{a}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

$$
\begin{aligned}
& \text { RHL }=\left(\frac{\tan x-\sin x}{x^{3}}\right) \\
& \text { put } \quad \mathrm{x}=0+\mathrm{h}=\mathrm{h} \text { and } \mathrm{h} \rightarrow 0 \\
& \therefore \text { RHL }=\left[\frac{\operatorname{tanh-\operatorname {sin}h}}{h^{3}}\right] \\
&=\left[\frac{\frac{\sin h}{\cos h}-\sin h}{h^{3}}\right] \\
&=\left[\frac{\sin h-\sin h \cdot \cos h}{h^{3} \cdot \cos h}\right] \\
&=\left[\frac{\sinh (1-\cos h)}{h^{3} \cdot \cos h}\right] \\
&=\left[\frac{\sin h \cdot 2 \sin ^{2}(h / 2)}{h^{3} \cdot \cos h}\right] \\
&=\left[\frac{\sin h}{h} \cdot \frac{2 \sin ^{2}(h / 2)}{\frac{h^{2}}{4} \times 4} \cdot \frac{1}{\cos h}\right] \\
&=\frac{2}{4}\left(\frac{\sin h}{h}\right) \cdot\left(\frac{\sin ^{2}(h / 2)}{h^{2} / 4}\right) \cdot\left(\frac{1}{\cos x}\right) \\
&=\frac{1}{2}(1)(1)(1) \\
& \text { RHL }=\frac{1}{2} \\
&=a \sin \frac{\pi}{2}(0+1)=a \sin \frac{\pi}{2}=a \\
& \mathrm{f}(0)
\end{aligned}
$$

$$
\left\{\left(\frac{\sin x}{x}\right)=1 \&(\cos x)=1\right\}
$$

since $f(x)$ is continuous at $x=0$
$\mathrm{LHL}=\mathrm{RHL}=f(0)$
$\Rightarrow a=\frac{1}{2}=a$
$\therefore a=\frac{1}{2}$ Ans.

