StudiesToday.com

CBSE Class 12 Mathematics Differentiation <u>Worksheet</u> <u>Inverse Trigonometric Diff.</u>

Q1.
$$y = \cos^{-1}\left(\frac{2x-3\sqrt{1-x^2}}{\sqrt{13}}\right)$$
. Find $\frac{dy}{dx}$.
Sol.1 We have, $y = \cos^{-1}\left(\frac{2x-3\sqrt{1-x^2}}{\sqrt{13}}\right)$
put $x = \sin\theta$
 $y = \cos^{-1}\left(\frac{2\sin\theta-3\cos\theta}{\sqrt{13}}\right)$
 $\Rightarrow y = \cos^{-1}\left(\frac{2}{\sqrt{13}}\sin\theta - \frac{3}{\sqrt{13}},\cos\theta\right)$
let $\sin\alpha = \frac{2}{\sqrt{13}} \&\cos\beta = \frac{3}{\sqrt{13}} \dots \left\{\cos\theta = \sqrt{1-\sin^2\theta} = \sqrt{\frac{1-4}{13}} = \frac{3}{\sqrt{13}}\right\}$
 $\Rightarrow y = \cos^{-1}(\sin\alpha.\sin\theta - \cos\alpha.\cos\theta)$
 $\Rightarrow y = \cos^{-1}(-(\cos\theta.\cos\alpha - \sin\theta.\sin\alpha))$
 $\Rightarrow y = \cos^{-1}(-(\cos(\theta + \alpha))) \dots (\cos^{-1}(\cos - \sin \alpha - \sin \beta - \sin \beta - \cos(\alpha + \beta)))$
 $\Rightarrow y = \pi - \cos^{-1}(\cos(\theta + \alpha)) \dots (\cos^{-1}(x) = \pi - \cos^{-1}x)$
 $\Rightarrow y = \pi - (\theta + \alpha).$
 $\Rightarrow y = \pi - \sin^{-1}x\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$ {Constant}
Diff w.r.t x
 $\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}$ Ans.
Q2. $y = \sin^{-1}\left(\frac{2^{2x+1}}{1+4^x}\right)$
 $\Rightarrow y = \sin^{-1}\left(\frac{2^{2x+1}}{1+4^x}\right)$
 $\Rightarrow y = \sin^{-1}\left(\frac{2^{2x+1}}{1+4^x}\right)$
 $put 2^x = \tan\theta$
 $\Rightarrow y = \sin^{-1}(\sin(2\theta))$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

$$\Rightarrow y = 2\theta$$

$$\Rightarrow y = 2\tan^{-1}(2^{X})$$
Diff w.r.t. x
$$\Rightarrow \frac{dy}{dx} = 2 \cdot \frac{1}{1+(2^{Y})^{2}} \cdot 2^{X} \cdot \log_{2} \dots \left\{ \frac{d}{dx} (a^{X}) = a^{X} \log a \right\}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2^{2^{Y+1}} \log_{2}}{1+4^{x}} \quad \text{Ans}$$
Q3. $y = \sin^{-1}(x\sqrt{1-x} - \sqrt{x}\sqrt{1-x^{2}}) \cdot \text{Find } \frac{dy}{dx}$.
Sol.3 We have, $y = \sin^{-1}(x\sqrt{1-x} - \sqrt{x}\sqrt{1-x^{2}})$ put $x = \sin \Lambda$ and $\sqrt{x} = \sin B$

$$\Rightarrow y = \sin^{-1}(\sin A\sqrt{1-\sin^{2}B} - \sin B\sqrt{1-\sin^{2}A})$$

$$\Rightarrow y = \sin^{-1}(\sin A \cos B - \sin B \cdot \cos A)$$

$$\Rightarrow y = \sin^{-1}(\sin A \cos B - \sin B \cdot \cos A)$$

$$\Rightarrow y = \sin^{-1}(\sin (A - B))$$

$$\Rightarrow y = A - B$$

$$\Rightarrow y = \sin^{-1}x - \sin^{-1}\sqrt{x}$$
Diff w.r.t. x
$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1-x^{2}}} - \frac{1}{\sqrt{1-x}} \cdot \frac{1}{\sqrt{2\sqrt{x}}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1-x^{2}}} - \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{1}{\sqrt{2\sqrt{x}}}$$
Diff. Co A Function w.r.t. Another Function
Q4. Diff. $\tan^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$ w.r.t. $\cos^{-1}(2x\sqrt{1-x^{2}})$.
Sol.4 Let $u = \tan^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$ put $x = \sin\theta$

$$\Rightarrow v = \cos^{-1}(2\sin\theta\sqrt{1-\sin^{2}\theta})$$

$$\Rightarrow u = \tan^{-1}\left(\frac{\sqrt{1-\sin^{2}\theta}}{\sin\theta}\right) \Rightarrow v = \cos^{-1}(2\sin\theta \cdot \cos\theta)$$

$$\Rightarrow v = \cos^{-1}(\sin(2\theta))$$

$$\Rightarrow u = \tan^{-1}\left(\frac{\cos\theta}{\sin\theta}\right) \Rightarrow v = \cos^{-1}\left(\cos\left(\frac{\pi}{2} - 2\theta\right)\right)$$

$$\Rightarrow u = \tan^{-1}(\cot\theta) \Rightarrow v = \frac{\pi}{2} - 2\theta$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Q6. Diff. $\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)$ w.r.t. $\sec^{-1} x$. Let $u = \tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)$ Sol.6 $\Rightarrow u = \tan^{-1}\left(\frac{\sin\left(\frac{\pi}{2} - x\right)}{1 + \cos\left(\frac{\pi}{2} - x\right)}\right)$ $L^{-1}X$ i.i. X $\frac{dv}{dx} = \frac{1}{x\sqrt{x^2-1}}$ Now $\frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{-1/2}{\frac{1}{x\sqrt{x^2-1}}}$ $\frac{du}{dv} = -\frac{x\sqrt{x^2-1}}{2}$ Ans.
(x) is r

Q7. If f(x) is continues at x = 1. Find the values of a and b.

 $f(x) = \{3ax + b ; x > 1\}$ $\{3ax + b ; x = 1\}$ $\{5ax - 2b ; x < 1\}$

Sol.7 LHL = (5ax - 2b)

Put x = 1 - h and $h \rightarrow 0$ LHL = (5a(1-h) - 2b) \Rightarrow LHL = 5a - 2b RHL = (3ax + b)

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

put x = 1 + h and $h \rightarrow 0$ RHL = [3a(1 + h) + b] \Rightarrow RHL = [3a + b] Now f(1) = 11Since f(x) is continuous at x = 1 \therefore LHL = RHL = f(1) y.on \Rightarrow 5a - 2b = 3a + b = 11 consider 5a - 2b = 113a + b = 11and solving these equations we get a = 3 and b = 2 \therefore f(x) is continuous at x = 1 for a = 3 & b = 2The function f(x) is continues on [0, 8]. find the value of 'a' and 'b'. Q8. 5 toc $f(x) = \{x^2 + ax ; 0 \le x \le 2\}$ $\{3x+2 ; 2 \le x \le 4\}$ $\{2ax + 5b; 4 < x \le 1\}$ Sol.8 Since f(x) is also continuous in [0, 8] \therefore f(x) is also continuous at x = 2 and x = 4 continuously at x = 2LHL = $(x^2 + ax + b)$ put x = 2 - h and $h \rightarrow 0$:. LHL = $[(2-h)^2 + a(2-h) + b]$ LHL = 4 + 2a + bRHL = (3x + 2)put $x = 2 + h \& h \rightarrow 0$ $\Rightarrow RHL = (3(2+h)+2)$ \Rightarrow RHL = 8 f(2) = 3(2) + 2 = 8we have, LHL = RHL = f(2) \Rightarrow 4 + 2a + b = 8 = 8 $\Rightarrow 2a + b = 4$(1) continuity at x = 4LHL = (3x + 2)

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

put x = 4 - h and $h \rightarrow 0$ LHL = (3(4-h)+2): LHL = 14 RHL = (2ax + 5b)put x = 4 + h and $h \rightarrow 0$ Jay con \Rightarrow RHL (2a(4 + h) + 5b) \Rightarrow RHL = 8a + 5b Now f(4) = 3(4) + 2 = 14we have , LHL = RHL = f(4) $\Rightarrow 14 = 8a + 5b = 14$ \Rightarrow 8a + 5b = 14(2) solving (1) & (2)we get a = 3 & b = -2 \therefore f(x) is continuous in [0, 8] for a = 3 & b = -2 (Ans.) If f(x) is continues at x = 2. Find the value of a and b. Q9 $f(x) = \left\{\frac{1-\sin^x}{3\cos^2 x}; x < \frac{\pi}{2}\right\}$ $\left\{a; x = \frac{\pi}{2}\right\}$ $\left\{\frac{b(1-\sin x)}{(\pi-2x)^2}; x > \frac{\pi}{2}\right\}$ $LHL = \left[\frac{1 - \sin^3 x}{3\cos^2 x}\right]$ Sol.9 put $x = \frac{\pi}{2} - h$ and $h \to 0$ $\therefore \text{ LHL} = \left[\frac{1-\sin^3\left(\frac{\pi}{2}-h\right)}{3\cos^2\left(\frac{\pi}{2}-h\right)}\right]$ $=\left[\frac{1-\cos^3 h}{3\sin^2 h}\right]$ $= \left[\frac{(1-\cosh)(1+\cos^2 h + \cosh)}{3(1+\cos^2 h)}\right] \qquad \dots = \left\{a^3 - b^3 = (a-b)(a^2 + b^2 + ab)\right\}$ $=\left[\frac{(1-\cosh)(1+\cos^2h+\cosh)}{3(1+\cosh)(1-\cosh)}\right]$ $=\left[\frac{1+\cos^2 h \cosh}{3(1+\cosh)}\right]$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	LHL $=\frac{1+1+1}{3(1+1)}=\frac{1}{2}$
	RHL = $\left[\frac{b(1-\sin x)}{(\pi-2x)^2}\right]$
	put $x = \frac{\pi}{2} + h \& h \to 0$
	RHL = $\left[\frac{b\left(1-\sin\left(\frac{\pi}{2}+h\right)\right)}{\left(\pi-2\left(\frac{\pi}{2}+h\right)^{2}\right)}\right]$
	$= \left[\frac{b(1-\cosh)}{(\pi-\pi-2h)^2}\right]$
	$=\left(\frac{b.2\sin 2(h/\pi)}{4h^2}\right)$
	$\Rightarrow RHL = \left[\frac{2\mathrm{b.sin}^2(h/2)}{4\frac{h^2}{4} \times 4}\right]$
	$=\frac{2b}{16}\left(\frac{\sin^2(h/2)}{h^2/4}\right)$
	$RHL = \frac{b}{8} \qquad \dots \left\{ \left(\frac{\sin^2 x}{x^2} \right) = 1 \right\}$
	$f\left(\frac{\pi}{2}\right) = a$
	since $f(x)$ is continuous at $x = 2$
	\therefore LHL = RHL = f(2)
	$\Rightarrow \frac{1}{2} = \frac{b}{8} = a$
	$\Rightarrow b = 4$ and $a = \frac{1}{2}$
	\therefore f(x) is continuous at x = 2 if $a = \frac{1}{2}$ and $b = 4$ Ans.
Q10.	Find the value of 'a' so that $f(x)$ is continues at $x = 0$.
	$f(x) = \left\{ a \sin\left(\frac{\pi}{2}x + \frac{\pi}{2}\right); x \le 0 \right\}$ $\left\{ \frac{\tan x - \sin x}{x^3}; x > 0 \right\}$
	$\left\{\frac{\tan x - \sin x}{x^3}; x > 0\right\}$
Sol.10	$LHL = \left[a\sin\frac{\pi}{2}(x+1)\right]$
	put $x = 0 - h = -h$ and $h \rightarrow 0$
	\therefore LHL =
	$=a\sin\left(\frac{\pi}{2}\right)$
	LHL = a

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

RHL = $\left(\frac{\tan x - \sin x}{x^3}\right)$ put x = 0 + h = h and $h \rightarrow 0$ \therefore RHL = $\left[\frac{\tan h - \sin h}{h^3}\right]$ $= \left[\frac{\frac{\sin h}{\cosh} - \sin h}{h^3} \right]$ $= \left[\frac{\sinh-\sinh.\cosh}{h^3.\cosh}\right]$ $=\left[\frac{\sinh(1-\cosh)}{h^3\cosh}\right]$ $= \left[\frac{\sinh .2\sin^2(h/2)}{h^3\cosh^2(h/2)}\right]$ $=\left[\frac{\sinh h}{h}\cdot\frac{2\sin^2(h/2)}{\frac{h^2}{\times 4}}\cdot\frac{1}{\cosh h}\right]$ $=\frac{2}{4}\left(\frac{\sinh h}{h}\right) \cdot \left(\frac{\sin^2(h/2)}{h^2/4}\right) \cdot \left(\frac{1}{\cos x}\right)$ $\dots \left\{ \left(\frac{\sin x}{x} \right) = 1 \& (\cos x) = 1 \right\}$ $=\frac{1}{2}(1)(1)(1)$ RHL $=\frac{1}{2}$ $=a\sin\frac{\pi}{2}(0+1)=a\sin\frac{\pi}{2}=a$ f(0) since f(x) is continuous at x = 0LHL = RHL = f(0) $\Rightarrow a = \frac{1}{2} = a$ $\therefore a = \frac{1}{2} \text{ Ans.}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.