TOPIC 7 APPLICATIONS OF INTEGRATION SCHEMATIC DIAGRAM

Topic	Concepts	Degree of	Reference
		Importance	NCERT Text BookEdition 2007
Applications of	(i)Area under Simple Curves	*	Ex.8.1 Q.1,2,5
Integration	(ii) Area of the region enclosed	***	Ex. 8.1 Q 10,11 Misc.Ex.Q 7
	between Parabola and line		
	(iii) Area of the region enclosed	***	Example 8, page 369
	between Ellipse and line		Misc.Ex. 8
	(iv) Area of the region enclosed	***	Ex. 8.1 Q 6
	between Circle and line		
	(v) Area of the region enclosed	***	Ex 8.2 Q1, Misc.Ex.Q 15
	between Circle and parabola		-0
	(vi) Area of the region enclosed	***	Example 10, page370
	between Two Circles		Ex 8.2 Q2
	(vii) Area of the region enclosed	***	Example 6, page368
	between Two parabolas		
	(viii) Area of triangle when	***	Example 9, page370
	vertices are given		Ex 8.2 Q4
	(ix) Area of triangle when sides	***	Ex 8.2 Q5 ,Misc.Ex. Q 14
	are given	0	
	(x) Miscellaneous Questions	***	Example 10, page374
			Misc.Ex.Q 4, 12

SOME IMPORTANT RESULTS/CONCEPTS

** Area of the region PQRSP = $\int_{a}^{b} dA = \int_{a}^{b} y \, dx = \int_{a}^{b} f(x) \, dx$.

** The area A of the region bounded by the curve x = g(y), y-axis and

the lines
$$y = c$$
, $y = d$ is given by $A = \int_{c}^{d} x \, dy = \int_{c}^{d} g(y) \, dy$

ASSIGNMENTS

(i) Area under Simple Curves

LEVEL I

- 1. Sketch the region of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and find its area, using integration,
- 2. Sketch the region $\{(x, y): 4x^2 + 9y^2 = 36\}$ and find its area, using integration.

(ii) Area of the region enclosed between Parabola and line

LEVEL II

- 1. Find the area of the region included between the parabola $y^2 = x$ and the line x + y = 2.
- 2. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

LEVEL III

1. Find the area of the region : $\{(x,y): y \le x^2 + 1, y \le x + 1, 0 \le x \le 2\}$

(iii) Area of the region enclosed between Ellipse and line

LEVEL II

- 1. Find the area of smaller region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$ and the straight line $\frac{x}{4} + \frac{y}{5} = 1$.
- (iv) Area of the region enclosed between Circle and line

LEVEL II

1. Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$.

LEVEL III

- 1. Find the area of the region : $\{(x,y): x^2 + y^2 \le 1 \le x + y\}$
- (v) Area of the region enclosed between Circle and parabola

LEVEL III

- 1. Draw the rough sketch of the region $\{(x, y): x^2 \le 6y, x^2 + y^2 \le 16\}$ an find the area enclosed by the region using the method of integration.
- 2. Find the area lying above the x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.
- (vi) Area of the region enclosed between Two Circles

LEVEL III

- 1. Find the area bounded by the curves $x^2 + y^2 = 4$ and $(x + 2)^2 + y^2 = 4$ using integration.
- (vii) Area of the region enclosed between Two parabolas

LEVEL II

1. Draw the rough sketch and find the area of the region bounded by two parabolas

 $4y^2 = 9x$ and $3x^2 = 16y$ by using method of integration.

(viii) Area of triangle when vertices are given

LEVEL II

- 1. Using integration compute the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4), and (5, 2).
- 2. Using integration compute the area of the region bounded by the triangle whose vertices are (-1, 1), (0, 5), and (3, 2).

(ix) Area of triangle when sides are given

LEVEL III

- 1. Using integration find the area of the region bounded by the triangle whose sides are y = 2x + 1, y = 3x + 1, x = 4.
- 2. Using integration compute the area of the region bounded by the linesx + 2y = 2, y x = 1, and 2x + y = 7.

(x) Miscellaneous Questions

LEVEL III

- 1. Find the area of the region bounded by the curves y = |x 1| and y = -|x 1| + 1.
- 2. Find the area bounded by the curve y = x and $y = x^3$.
- 3. Draw a rough sketch of the curve $y = \sin x$ and $y = \cos x$ as x varies from x = 0 to $x = \frac{\pi}{2}$ and find the area of the region enclosed by them and x-axis
- 4. Sketch the graph of y = |x + 1|. Evaluate $\int_{-3}^{1} |x + 1| dx$. What does this value represent on

the graph.

- 5. Find the area bounded by the curves $y = 6x x^2$ and $y = x^2 2x$.
- 6. Sketch the graph of y = |x + 3| and evaluate the area under the curve y = |x + 3| above x-axis and between x = -6 to x = 0. [CBSE 2011]

Questions for self evaluation

- 1. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y 2.
- 2. Find the area bounded by the parabola $y = x^2$ and y = |x|.
- 3. Find the area of the region : $\{(x,y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$
- 4. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.
- 5. Find the area of the region : $\{(x,y): x^2 + y^2 \le 1, \le x + y\}$
- 6. Find the area lying above the x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.
- 7. Find the area bounded by the curves $x^2 + y^2 = 4$ and $(x + 2)^2 + y^2 = 4$ using integration.

- 8. Using integration compute the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4), and (5, 2).
- 9. Using integration compute the area of the region bounded by the lines 2x + y = 4, 3x 2y = 6, and x 3y + 5 = 0.
- 10. Sketch the graph of : $f(x) = \begin{cases} |x-2| + 2, & x \le 2 \\ x^2 2, & x > 2 \end{cases}$.

Evaluate $\int\limits_0^4 f(x) dx$. What does the value of this integral represent on the graph ?