APPLICATION OF INTEGRALS

KEY POINTS TO REMEMBER

$>$ Area bounded by the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$, the x axis and between the ordinates, $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ is given by
Area $=\int_{a}^{b} l f(x) l \mathrm{dx}$

$>$ Area bounded by the curve $\mathrm{x}=\mathrm{f}(\mathrm{y})$, the y axis and between abscissas, $\mathrm{y}=\mathrm{c}$ and $\mathrm{y}=\mathrm{d}$ is given by $\int_{c}^{d} l f(y) l$ dy

$>$ Area bounded by two curves $\mathrm{y}=\mathrm{f}(\mathrm{x}) \& \mathrm{y}=\mathrm{g}(\mathrm{x})$ s.t. $0 \leq g(x) \leq f(x)$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}] \&$ between the ordinate at $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ is given by $\int_{a}^{b} l f(x)-g(x) l \mathrm{dx}$

X
Required Area $=\int_{a}^{b} l f(x)-g(x) l \mathrm{dx}$
$>$ Area bounded by the following curve given below given by

Required Area $=\left|\int_{a}^{k} f(x) \mathrm{dx}\right|+\int_{k}^{b} f(x) d x$

Downloaded from www.studiestoday.com

ASSIGNMENT

1. Find the area of the following regions:
i. $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$
ii. $\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}+\mathrm{y}^{2} \leq 2 a x, \mathrm{y}^{2} \geq a x, x \geq 0, y \geq 0\right\}$
iii. $\left\{(\mathrm{x}, \mathrm{y}): \frac{x^{2}}{9}+\frac{y^{2}}{4} \leq 1 \leq \frac{x}{3}+\frac{y}{2}\right\}$
iv. $\left\{(\mathrm{x}, \mathrm{y}): 1 \mathrm{x}-11 \leq y \leq \sqrt{5-x^{2}}\right\}$
v. $\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}+\mathrm{y}^{2} \leq 4, x+y \geq 2\right\}$
vi. $\left\{(\mathrm{x}, \mathrm{y}): 0 \leq y \leq x^{2}+3 ; 0 \leq y \leq 2 x+3,0 \leq x \leq 3\right\}$
vii. $\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2} \leq \mathrm{y} \leq \mathrm{lx} 1\right\}$
2. Sketch the graph of $\mathrm{y}=1 \mathrm{x}+11$ and evaluate $\int_{-3}^{1} l x+1 l d x$. What does $\int_{-3}^{1} l x+1 l d x$ represent on the graph?
3. Using the method of integration, find the area of the region bounded by the lines $3 x-2 y+1=0$ $2 x+3 y-21=0$ and $x-5 y+9=0$.
4. Sketch the region common to the circle $x^{2}+y^{2}=16$ and parabola $x^{2}=6 y$. Also find the area of the region using integration.
5. Using integration, find the area of the region bounded by the curves $y=x^{2}+2, y=x$, $\mathrm{x}=0$ and $\mathrm{x}=3$.
6. Compute the area bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$.

ANSWER KEY

1. i. ($\frac{\pi}{4}-\frac{1}{2}$)sq. units ii. $\left(\frac{\pi}{4}-\frac{2}{3}\right) \mathrm{a}^{2}$ sq. units \quad iii. $\frac{3}{2}(\pi-2)$ sq. units \quad iv. $\left(\frac{5 \pi}{4}-\frac{1}{2}\right)$ sq. units
v. $(\pi-2)$ sq. units
vi. $50 / 3$ sq. units
vii. $1 / 3$ sq. units
2. 4
3. $13 / 2$ sq. units
4. ($\left.\frac{4 \sqrt{3}}{3}+\frac{16 \pi}{3}\right)$ sq. units $\quad 5.21 / 2$ sq. units $\quad 6.6$ sq. units
