Assignment of Continuity and Differentation

1. Prove that $\mathbf{y}=|\boldsymbol{x}|$ is continuous at $\mathrm{x}=0$, but not differentiable at $\mathrm{x}=0$.
2. Prove that $\mathbf{y}=[x]$ is continuous at $x=0$.
3. $\mathrm{F}(\mathrm{x})=\left\{\begin{array}{l}x^{2} \sin \frac{1}{x}, \quad x \neq 0 \\ x, \quad \text { when } x=0\end{array}\right.$, Check the differentiability and continuity at $\mathrm{x}=0$.
4. Does $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ exists?
5. Find the derivative of the following functions w.r.t. x :
(i) $\tan ^{-1}\left(1+x^{2}\right)$
(ii) $\operatorname{Sec} \tan ^{-1} \sqrt{x}$
(iii) $\sqrt{\sin \sqrt{x}}$
(iv) $\sqrt{x \sin x}$
(v) $\tan x^{0}$
(vi) $\cos \left(\frac{1-x^{2}}{1+x^{2}}\right)$
(vii) $\sqrt{x} \sin x+\sin \sqrt{x}$
(viii) $\tan \left(\frac{x-x^{-1}}{x+x^{-1}}\right)$
(ix) $\sin \sqrt{\cos \sqrt{\operatorname{tanmx}} \quad(x) \sin [\cos \{\tan (\cot x)\}]}$
(xiii) $\tan ^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right] \quad$ (xiv) $\tan ^{-1}\left[\frac{4 \sqrt{x}}{1-4 x}\right]$
(xv) $\sin ^{-1}\left[x \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{2}}\right]$ (xvi) $\sin ^{-1}\left[\frac{5 x+12 \sqrt{1-x^{2}}}{13}\right]$ (xvii) $x^{\left(x^{x}\right)}$
$(\mathrm{xviii})\left(x^{x}\right)^{x} \quad(\mathrm{Xix}) \log _{7} \log _{7} x \quad(\mathrm{xx})\left(\frac{3+x}{1+x}\right)^{2+3 x} \quad(\mathrm{xxi}) x^{\cos x}+(\sin x)^{\tan x}$
$(\mathrm{xxii})(\log x)^{x}+x^{\log x}+(\log x)^{\log x}$.
6. If $y=\cos ^{-1} x$, Find $\frac{d^{2} y}{d x^{2}}$ in term of y alone.
7. If $y=a \cos (\log x)+b \sin (\log x)$, Show that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+Y=0$.
8. If $\mathrm{y}=x^{x}$, show that $\frac{d^{2} y}{d x^{2}}-\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}-\frac{y}{x}=0$.
9. If $(x-a)^{2}+(y-b)^{2}=c^{2}, c>0$. Prove that $\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}}$ is a constant independent of a \& b.
10. If $x=a\{\cos t+t \sin t\}, y=a\{\sin t-t \operatorname{cost}\}$, Prove that $\frac{d^{2} y}{d x^{2}}=\frac{\sec ^{3} t}{a t}$.
11. Verify Rolle's theorem for $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}(\mathrm{x}-1)^{2}, 0 \leq x \leq 1$.
12. Verify L.M.V theorem for the function $f(x)=x(x-1)(x-2)$ in the interval $\left(0, \frac{1}{2}\right)$.
13. Prove that $g(x)=x-[x]$ is discontinuous at all integral parts.
14. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, Check the continuity at $\mathrm{x}=0$.
15. Show that the cotx is a continuous function in its domain.
16. Show that $\mathrm{f}(\mathrm{x})=|1-x+|x||$ is a continuous function.
17. Find all the points of discontinuity for greatest integer function.
18. If the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}3 a x+b, & x>1 \\ 11, & x=1 \\ 5 a x-2 b & , \\ x<1\end{array}\right.$ is continuous at $\mathrm{x}=1$, find the values of $\mathrm{a} \& \mathrm{~b}$.
19. $\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{p x^{2}}, & x \neq 0 \\ k & , x=1\end{array}\right.$, is continuous at $\mathrm{x}=0$, find the value of k .
20. If the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{1-\sin ^{2} x}{3 \cos ^{2} x}, & x<\frac{\pi}{2} \\ a, & x=\frac{\pi}{2}, \\ \frac{b(1-\sin x)}{(\pi-2 x)^{2}}, & x>\frac{\pi}{2}\end{array}\right.$ is continuous at $\mathrm{x}=\frac{\pi}{2}$, find the values of a $\& \mathrm{~b}$.
21. Prove that $\frac{d}{d x}\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]=\sqrt{a^{2}-x^{2}}$.
22. Prove that: $\frac{d}{d x}\left[\cot ^{-1} \sqrt{\frac{1-\sin x}{1+\sin x}}\right]=\frac{1}{2}$.
23. Differentiate: $\tan ^{-1} \frac{2 x}{1-x^{2}}$ w.r.t. $\sin ^{-1} \frac{2 x}{1+x^{2}}$.
24. If $\mathrm{x} \sqrt{1+y}+y \sqrt{1+x}=0$, prove that $\frac{d y}{d x}=-(1-x)^{-2}$.
25. If $y=\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)$, show that $\frac{d y}{d x}-\sec \mathrm{x}=0$.
26. If $x^{m} y^{n}=(x+y)^{m+n}$, prove that $\frac{d y}{d x}=\frac{y}{x}$.
27. If $\mathrm{x}=\mathrm{a}(\theta-\sin \theta), \mathrm{y}=\mathrm{a}(1-\cos \theta)$.find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{2}$.
28. If $\mathrm{y}=a^{t+\frac{1}{t}}, \mathrm{x}=\left(t+\frac{1}{t}\right)^{a}$, find $\frac{d y}{d x}$.
29. If $\mathrm{x}=\sqrt{a^{\sin ^{-1} t}}, \mathrm{y}=\sqrt{a^{\cos ^{-1} t}}$. prove that $\frac{d y}{d x}=\frac{-y}{x}$.
30. If $y=x-x^{2}$, Find derivative of y^{2} w.r.t. x^{2}.
31. If $\mathrm{y}=\left|\begin{array}{ccc}a & b & c \\ f(x) & g(x) & h(x) \\ l & m & n\end{array}\right|$. Prove that $\frac{d y}{d x}=\left|\begin{array}{ccc}a & b & c^{c} \\ f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n\end{array}\right|$.
32. If $\mathrm{f}(\mathrm{x})=|x|^{3}$. Show that $\mathrm{f}^{\prime \prime}(\mathrm{x})$ exists for all real x and find it.
33. If $\mathrm{x}=\mathrm{f}(\mathrm{t}), \mathrm{y}=\mathrm{g}(\mathrm{t})$. Prove that $\frac{d^{2} y}{d x^{2}}=\frac{\left(\frac{d x}{d t}\right)\left(\frac{d^{2} y}{d t^{2}}\right)-\left(\frac{d^{2} x}{d t^{2}}\right)\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)^{3}}$.
34. find differential coefficient of $\log _{10} x$ w.r.t. $\log _{x} 10$.
35. IF $\sqrt{X+Y}+\sqrt{y-X}=\mathrm{C}$. Prove that $\frac{d^{2} y}{d x^{2}}=\frac{2}{c^{2}}$.
