Downloaded from www.studiestoday.com

Chapter: - Application of Integration, Differential equations

1 marks question

- **Q1**. Find area under the curve $y = \sqrt{a^2 x^2}$ included between the lines x=0 and x=a **Ans.** $\frac{\pi a^2}{4}$ sq.units.
- **Q2**. Find area of the region bounded by the curve $y^2=4x$, y-axis and the line y=3 **Ans.** $\frac{9}{4}$ sq. units.
- Q3. Find area of the region bounded by the curve x^3 =y, x-axis, line x=-2 and x=1 Ans. $\frac{4}{3}$ sq.units.
- **Q4**. Find area of the region bounded by the curve y=cosx, x=0 and x= π **Ans.** 2 sq.units.
- **Q5.**Find the order and degree of the differential equation: $\left(\frac{dy}{dx} \right)^3 + \left(\frac{d^2y}{d^2x} \right)^2 = 0$ **Ans. 2, 2**
- **Q6.** Find the number of arbitrary constants in the general solution of a differential equation of fourth order. **Ans**. 4

4/6 marks question

- **Q7**. Draw a rough sketch of the region $\{(x,y): y^2 \le 6ax, x^2 + y^2 \le 16a^2\}$. Also, find the area of the region sketched, using integration. **Ans.** $4/3(\sqrt{3}+4\pi)a^2$ sq.units.
- **Q8**. Draw a rough sketch of the curve $y = \sin x$ and $y = \cos x$ as x varies from 0 to $\pi/2$ and find the area of the region enclosed by them and x-axis. Ans. $(2 \sqrt{2})$ sq.units..
- **Q9**. Find the area of the region lying between the parabola $y^2 = 4ax$ and $x^2 = 4ay$, where
- a> 0 . **Ans.** $(16a^2/3)$ sq. units.
- **Q10**.Find the area of the region bounded by the curve $y = \sqrt{1-x^2}$, line y = x and the positive x-axis. **Ans.** $\pi/8$. sq.units.
- **Q11**. Find the area bounded by the curves $y = 6x x^2$ and $y = x^2 2x$. **Ans.** 64/3. sq.units.
- **Q12.** Find the area of the following region: $\{(x,y): x^2+y^2 \leq 2ax, y^2 \geq ax, x \geq 0, y \geq 0\}$.
- **Ans.** $a^2/12(3\pi 8)$. sq.units.
- **Q13**. Find the area bounded by the curve $y^2 = 4a^2(x-3)$ and the line x=3, y=4a. **Ans.**16a/3.
- **Q14**. Calculate the area of the region enclosed between circles $x^2 + y^2 = 1$ and $(x 1/2)^2 + 1$

$$y^2 = 1$$
. Ans. $\left[-\frac{2\sqrt{3} + \sqrt{15}}{16} - 2\sin^{-1}\frac{1}{4} + \pi \right]$. sq.units.

- **Q15**. Sketch the graph of $f(x) = \begin{cases} |x-2|+2 & x \le 2 \\ x^2-2 & x > 2 \end{cases}$. Evaluate $\int_0^4 f(x) dx$. What does the value of this
- integral represent on the graph? **Ans.** $\frac{62}{3}$ sq.units.

P.T.O.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Q16. Make a rough sketch of the region given below and find its area using integration.

$$\{(x,y):\ 0\leq y\leq x^2+3\ ;\ 0\leq y\leq 2x+3, 0\leq x\leq 3\}.$$
 Ans. 50/3. sq.units.

Q17. Determine the area enclosed between the curve $y = 4x - x^2$ and x-axis. Ans. 32/3.sq.units

Q18. Solve the following differential equations:

(i).
$$\frac{dy}{dx} = \frac{e^x}{y} \frac{(\sin^2 x + \sin 2x)}{(2 \log y + 1)}$$
. Ans. $y^2 \log y = \sin^2 x \cdot e^x + c$.

(ii).
$$\sqrt{1+x^2+y^2+x^2y^2} + xy\frac{dy}{dx} = 0$$
. Ans. $\sqrt{1+x^2} + \frac{1}{2}\log\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1} + \sqrt{1+y^2} = c$.

(iii).
$$e^x \sqrt{1-y^2} dx + \frac{y}{x} dy = 0$$
. Ans. $(x-1)e^x - \sqrt{1-y^2} = c$.

(iv).
$$(1 + e^{x/y})dx + e^{x/y}(1 - \frac{x}{y})dy = 0$$
. Ans. $x + ye^{\frac{x}{y}} = c$.

(v).
$$\frac{dy}{dx} = \cos^3 x \sin^4 x + x\sqrt{2x-1}$$
. Ans. $y = \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + e^x(x-1) + c$.

(vi).
$$\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{(x^2 + 1)^2} = 0$$
. Ans. $(x^2 + 1)^2y = -x + c$.

(vii).
$$\frac{dy}{dx} + y \cot x = 2x + x^2 \cos x$$
, given that $y(0) = 0$. Ans. $y = x^2$.

(viii).
$$(x - \sin y)dy + \tan y \ dx = 0, y(0) = 0.$$
 Ans. $y = \sin^{-1} 2x$.

(ix).
$$ye^y dx = (y^3 + 2xe^y) dy$$
, $y(0) = 1$. Ans. $x = y^2(e^{-1} - e^{-y})$

(x).
$$(1 + \sin^2 x)dy + (1 + y^2)\cos x dx = 0$$
, $y(1) = 0$. Ans. $\tan^{-1}(\sin x) + \tan^{-1} y = \pi/4$.

(xi).
$$y - x \frac{dy}{dx} = a \left(y^2 + x^2 \frac{dy}{dx} \right)$$
, where $x = a$, $y = a$.

Ans.
$$x(1-ay)(1+a^2) = y(ax+1)(a^2-1)$$

(xii).
$$\frac{dy}{dx} = e^{y+x} + e^y x^2$$
. Ans. $e^x + e^{-y} + \frac{x^3}{3} = c$.

(xiii).
$$2ye^{x/y} dx + (y - 2xe^{x/y})dy = 0$$
. Ans. $2e^{\frac{x}{y}} + \log y = c$.

Q19. Show that
$$y = ae^{2x} + be^{-x}$$
 is a solution of $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$.

Q20. Form the differential equation corresponding to $y^2 = a(b-x^2)$ where a and b are arbitrary constants. Ans. $xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0$.

Q21. Form the differential equation of family of curves given by $xy = Ae^x + Be^{-x} + x^2$.

Ans.
$$x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} = xy - x^2 + 2$$
.

Q22. Form the differential equation corresponding to $y^2 = a(b-x)(b+x)$ by eliminating a and

b. Ans.
$$xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\left(\frac{dy}{dx}\right) = 0.$$

Q23. Show that the differential equation of which $y = 2(x^2 - 1) + ce^{-x^2}$ is a solution is $\frac{dy}{dx} + 2xy = 4x^3$.

Q24. Form the differential equation representing the family of curves $y^2 - 2ay + x^2 = a^2$, where a is an arbitrary constants. **Ans.** $(x^2 - 2y^2) \left(\frac{dy}{dx}\right)^2 - 4xy\frac{dy}{dx} - x^2 = 0$.

Q25.Form the differential equation of which $y = \tan^{-1} x + ce^{-\tan^{-1} x}$ is a solution, c being an arbitrary constant. Ans. $y + (1 + x^2) \frac{dy}{dx} = 1 + \tan^{-1} x$.

------ Best of Luck ------