Applications of Derivatives

Key points to remember

• Rate of change- Let y = f(x) be a function then the rate of change of y with respect to x is given by $\frac{dy}{dx} = f'(x)$ where a quantity y varies with another quantity x.

$$\frac{dy}{dx}/x = x_0$$
 or f'(x_0) represents the rate of change of y w.r.t. x at x = x_0 .

- If x = f(t) and y = g(t)By the chain rule $\frac{dy}{dx} = \frac{dy}{dx} / \frac{dy}{dx} \text{ if } \frac{dy}{dx} \neq 0$
- (i) A function f(x) is said to be **increasing** on an interval (a, b) if $x_1 < x_2$ in (a, b) this implies $f(x_1) \le f(x_2) \ \forall \ x_1, \ x_2 \in (a, b)$. Alternatively if $f'(x_0) \ge 0 \ \forall \ x \in (a, b)$, then f(x) is increasing function in (a, b).
- (i) A function f(x) is said to be **decreasing** on an interval (a, b) if $x_1 \le x_2$ in (a, b) this implies $f(x_1) \ge f(x_2) \ \forall \ x_1, \ x_2 \in (a, b)$. Alternatively if $f(x) \le 0 \ \forall \ x \in (a, b)$, then f(x) is decreasing function in (a, b).
- The **equation of tangent** at the point (x_0, y_0) to a curve y = f(x) is given by $y y_0 = \frac{dy}{dx}(x x_0)$
- Where $\frac{dy}{dx}$ is **slope** of tangent at (x_0, y_0)
- The **equation of normal** at the point (x_0, y_0) to a curve y = f(x) is given by $y y_0 = \frac{-1}{dy/dx}(x-x_0)$
- If $\frac{dy}{dx} = 0$, then the tangent is parallel to x-axis at (x_0, y_0) , then the equation of tangent is $\mathbf{x} = \mathbf{x_0}$.
- If $\frac{dy}{dx}$ does not exist then the normal is parallel to x-axis at (x_0, y_0) , then the equation of normal is $y = y_0$.
- Let f be a function. Let point c be in the domain of the function f at which either f'(x) = 0 or f is not derivable is called a **critical point** of f.
- **First Derivative Test**: Let f be a function defined on an open interval I.Let f be continuous at a critical point $c \in I.Then$
 - If f'(x) changes sign from positive to negative as we pass through c, then c is called **point of local maxima**.
 - If f'(x) changes sign from negative to positive as we pass through c, then c is called **point of local minima.**

Increasing and Decreasing Functions ASSIGNMENT-1

- Q 1) Find the intervals in which the following functions are strictly increasing, increasing, strictly decreasing and decreasing.
- (i) $f(x) = (x+1)^3(x-1)^3$
- (ii) $f(x) = x^3 6x^2 + 9x + 15$
- (iii) $f(x) = x^3 12x^2 + 36x + 17$
- (iv) $f(x) = -2x^3 9x^2 12x + 1$
- (v) $f(x) = (x+2)e^{-x}$
- Q 2) Find the intervals for which the following functions are strictly increasing and strictly decreasing.
- (i) $f(x) = x/\log x \ x>0$ and $x \neq 1$
- (ii) $f(x) = x/(1+x^2)$
- (iii) $f(x) = 2\log(x-2) x^2 + 4x + 1$
- (iv) $f(x) = x^x x>0$
- (v) $f(x) = x/2 + 2/x \quad x \neq 0$
- (vi) $f(x) = (4x^2 + 1)/x$
- (vii) $f(x) = x^4 x^3/3$
- (viii) $f(x) = (x-2)/(x+1), x \neq -1$
- Q 3) Show that the function $f(x) = x^3 6x^2 + 12x 18$ is an increasing function on **R**.
- Q 4) Find the intervals in which the function $f(x) = \sin x \cos x$, $0 < x < 2\pi$ is strictly increasing or decreasing.
- Q 5) (i) Show that $f(x) = e^{1/x}$ is a decreasing function for $x \neq 0$
 - (ii) Show that $f(x) = \log_a x \ 0 < a < 1$ is a decreasing function for all x > 0.
 - (iii) Show that $f(x) = x \sin x$ is an increasing function for all $x \in R$.
 - (iv) Show that $f(x) = \cos^2 x$ is a decreasing function on $(0,\pi/2)$.
 - (v) Show that $f(x) = \sin x$ is an increasing function on $(-\pi/2, \pi/2)$.
 - (vi) Show that $f(x) = \sin(2x + \pi/4)$ is a decreasing function on $(3\pi/8, 5\pi/8)$.
- Q 6) Find the values of k for which $f(x) = kx^3 9kx^2 + 9x + 3$ is increasing on R
- Q7) Show that f(x) = (3/x) + 7 is a decreasing function for $x \in R$ ($x \ne 0$).

```
Q 8) Without using derivatives, Prove that
```

6. k \in (0, 1/3)

```
(i) f(x) = \log_e x is increasing on (0, \infty)
```

- (ii) f(x) = ax + b, where a>0 & a and b are constants is an increasing function.
- (iii) f(x) = ax + b, where a<0 & a and b are constants is a decreasing function.
- (iv) f(x) = -3x + 12 is strictly decreasing on R.
- (v) $f(x) = x^2$ is strictly increasing on $[0, \infty)$ & decreasing on $(-\infty, 0]$.

ANSWER KEY

```
1. ii. strictly increasing in (-\infty, -3) \cup (1, \infty) and strictly decreasing in (-3, 1)
      increasing in (-\infty, -3] \cup 1, \infty) and decreasing in [-3, 1]
   iii. strictly increasing in (-\infty, 2) \cup (6, \infty) and strictly decreasing in (2, 6)
      increasing in (-\infty, 2] \cup [6, \infty) and decreasing in [2, 6]
   iv. strictly increasing in (-2, -1) and strictly decreasing in (-\infty, -2) \cup (-1, \infty)
      increasing in [-2, -1] and decreasing in (-\infty, -2] \cup [-1, \infty)
   v. strictly increasing in (-\infty, -1) and strictly decreasing in (-1, \infty)
      increasing in (-\infty, -1] and strictly decreasing in [-1, \infty)
2. i. strictly increasing in (e, \infty) and strictly decreasing in (0, e) - \{1\}
    ii. strictly increasing in (-1, 1) and strictly decreasing in (-\infty, -1) \cup (1, \infty)
    iii. strictly increasing in (2, 3) and strictly decreasing in (3, \infty)
   iv. strictly increasing in (1/e, \infty) and strictly decreasing in (0, 1/e)
    v. strictly increasing in (-\infty, -2) \cup (2, \infty) and strictly decreasing in (-2, 0) \cup (0, 2)
   vi. strictly increasing in (-\infty, -1/2) \cup (1/2, \infty) and strictly decreasing in (-1/2, 0) \cup (0, 1/2)
   vii. strictly increasing in (1/4, \infty) and strictly decreasing in (-\infty, 1/4)
   viii. strictly increasing in R - {-1}
4. increasing on (0, \pi/4) \cup (\frac{5\pi}{4}, 2\pi) and decreasing on (\frac{\pi}{4}, \frac{5\pi}{4})
```

Assignment

Tangent and Normal

- 1. Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1,1) is 2.
- 2. If tangent to the curve $y=x^3+ax+b$ at (1,-6) is parallel to the line x-y+5=0. Find a and b.
- 3. Find a point on the curve $y=x^3-3x$ where tangent is parallel to a chord joining (1,-2) and (2,2).
- 4. Find the points on the curve $y^2=2x^3$ at which the tangent lines are inclined at an angle of 45^0 with the x- axis.
- 5. Find the points on the curve $y=x^2$ where slope of the tangent is equal to x coordinate of the point.
- 6. Find the points on the curve $y=x^2$ at which the tangents are equally inclined with the axes.
- 7. Find the point on the curve $y=3x^2+4$ at which tangent is perpendicular to the line with the slope -1/6.
- 8. find the points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which tangents are (1)parallel to x- axis. (2)parallel to y- axis.
- 9. Show that the line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{\frac{-x}{a}}$ at the point where it crosses the y- axis.
- 10. For the curve $y=4x^3-2x^5$. Find all points at which the tangent passes through the origin.
- 11. Show that the normal at any point α to the curve $x=a(\cos \alpha + \alpha \sin \alpha)$ and $y=a(\sin \alpha \alpha \cos \alpha)$ is at a constant distance from the origin.
- 12. Find equation of tangent to the curve $x = \alpha \sin \alpha$, $y=1+\cos \alpha$ at $\alpha = \frac{\pi}{4}$.
- 13. Find equation of normal to the curve $x^2+2y^2-4x-6y+8=0$ at the point whose abscissa is 2.
- 14. Show that the condition that the curves $ax^2 + by^2 = 1$ and $cx^2 + dy^2 = 1$ should intersect orthogonally is that $\frac{1}{a} \frac{1}{b} = \frac{1}{c} \frac{1}{d}$.
- 15. Show that the curves $4x = y^2$ and 4xy = k cut at right angles if $k^2 = 512$.

Answer Key

1. a=5,b=-4 **2**.a=-2,b=-5 **3**.
$$\pm \sqrt{\frac{7}{3}}$$
, $\mp \frac{2}{3}\sqrt{\frac{7}{3}}$ **5**.(0,0).

7.(1,7) **8(i)** (0,4)(0,-4) **(ii)** (3,0)(-3,0) **10.** (0,0),(1,2),(-1,-2) **13.**
$$x = 2$$

Assignment

Maxima - Minima

- 1. Show that all the rectangles with a given perimeter, the square has the largest area.
- 2. Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.
- 3. Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.
- 4. Show that a cylinder of given volume which is open at the top has minimum total surface area, provided its height is equal to the radius of its base.
- 5. Show that the height of the closed cylinder of given surface and maximum volume is equal to the diameter of its base.
- 6. A jet of enemy is flying along the curve $y = x^2+2$. A soldier is placed at the point the point (3,2). What is the nearest distance between the soldier and the jet?
- 7. An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of the material will be least when depth of the tank is half of its width.
- 8. Show that the among all positive numbers x and y with $x^2+y^2=r^2$, the sum x+ y is largest when $x = y = \frac{r}{\sqrt{2}}$.
- 9. A wire of length 20m is to be cut into 2 pieces. One of the piece will be bent into the shape of a square and the other into the shape of an equilateral triangle. Where the wire should be cut so that the sum of the areas of the square is minimum.
- 10. A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, Find the dimensions of the rectangle that will produce the largest area of the window.
- 11. Determine the points on the curve $x^2=4y$ which are nearest to the point (0,5).
- 12. Determine the point on the curve $y^2=4x$ which is nearest to the point (2,-8).
- 13. Determine two positive numbers whose sum is 15 and the sum of whose squares is minimum.
- 14. Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
- 15. How should we choose two numbers, each greater than or equal to -2, whose sum is 1/2 and sum of the first and cube of the second is minimum.
- 16. Divide 15 into two parts such the square of one multiplied with cube of the other is minimum.
- 17. A wire of 25m is to be cut into 2 pieces. One of the pieces is to be made into a square and the other into the circle. What should be lengths of the two pieces so that combined area of the square and the circle is minimum.
- 18. A square piece of tin of side 18 cm is to be made into box without top cutting a square from each corner and folding up the flaps to form a box. What should be side of the

square to be cut off so that the volume of the box is maximum? Also find the maximum volume.

- 19. The space s described in time t by a particle moving in a straight line is given by $s=t^5$ - $40t^3+30t^2+80t-250$. Find the minimum value of the acceleration.
- 20. Show that cone of the greatest volume that which can be inscribed in a given sphere has an altitude equal to 2/3 of the diameter of the sphere.
- 21. If $f(x)=x^3+ax^2+bx+c$ has maximum at x=-1 and minimum at x=3. Determine a, b, c.
- 22. A closed cylinder has volume 2156 cm³. What will be the radius of its base so that its total surface area is minimum.
- 23. Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius $5\sqrt{3}$ is 500π cm³.
- 24. Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm.

ANSWER KEY

3.
$$\frac{4}{3} \frac{\pi r^3}{\sqrt{3}}$$

6.
$$\sqrt{5}$$

9.
$$\frac{20\sqrt{3}}{9+4\sqrt{3}}$$
, $\frac{60}{9+4\sqrt{3}}$

3.
$$\frac{4}{3}\frac{\pi r^3}{\sqrt{3}}$$
 6. $\sqrt{5}$ 9. $\frac{20\sqrt{3}}{9+4\sqrt{3}}$, $\frac{60}{9+4\sqrt{3}}$ 10. $\frac{12}{6-\sqrt{3}}$, $\frac{24-6\sqrt{3}}{6-\sqrt{3}}$

$$11.(\pm 2\sqrt{3},3)$$

13.
$$\frac{15}{2}$$
, $\frac{15}{2}$

11.(
$$\pm 2\sqrt{3}$$
,3) 12 (4,-4) 13. $\frac{15}{2}$, $\frac{15}{2}$ 14. 32,32
15. ($\frac{1}{2}$, $-\frac{1}{\sqrt{3}}$), $\frac{1}{\sqrt{3}}$ 16. 6,9 17. $\frac{100}{\pi+4}$, $\frac{25\pi}{\pi+4}$ 18. 3cm.,432cm³

17.
$$\frac{100}{\pi+4}$$
, $\frac{25\pi}{\pi+4}$

19.a=-260 at t = 2 21. a= -3,b=-9,c ϵ R 22. 7cm.