APPLICATION OF INTEGRALS

Class $12^{\text {th }}$

\begin{tabular}{|c|c|}
\hline Q.1) \& Find the area bounded by the curves $4 y=3 x^{2}$ and $2 y=3 x+12$.

\hline Sol.1) 1)

2) \& | $3 x^{2}=4 y$ |
| :--- |
| (.) parabola |
| (.) vertex $(0,0)$ |
| (.) open towards +ve y-axis $2 y=3 x+12$ |
| (.) line $\text { (.) points }(0,6) \text { and }(-4,0)$ |
| Intersection points: |
| Solving $3 x^{2}=4 y$ and $2 y=3 x+12$ |
| We have $(4,12)$ and $(-2,3)$ $\begin{aligned} \text { Required area } & =\int_{-2}^{4}\left(\frac{3 x+12}{2}\right)-\left(\frac{3 x^{2}}{4}\right) d x \\ & =\frac{1}{4} \int_{-2}^{4}\left(6 x+24-3 x^{2}\right) d x \\ & =\frac{3}{4} \int_{-2}^{4}\left(2 x+8-x^{2}\right) d x \\ & =\frac{3}{4}\left[x^{2}+8 x-\frac{x^{3}}{3}\right]_{-2}^{4} \\ & =\frac{3}{4}\left[\left(16+32-\frac{64}{3}\right)-\left(4-16+\frac{8}{3}\right)\right] \\ & =\frac{3}{4}\left[\frac{80}{3}+\frac{28}{3}\right]=\frac{3}{4}\left(\frac{108}{3}\right)=\frac{108}{4}=27 \end{aligned}$ |
| \therefore Required area $=27$ square units ans. |

\hline Q.2) \& Find the area bounded by $y^{2}=4 a x$ and $y=m x$.

\hline Sol.2) 1)

2) \& | $y^{2}=4 a x$ |
| :--- |
| (.) parabola |
| (.) vertex $(0,0)$ |
| (.) open towards + ve x-axis $y=m x$ |
| (.) line |
| (.) passing through (0,0) |
| Intersection Points: |
| Solving $y^{2}=4 a x$ and $y=m x$ |
| we have, $(0,0)$ and $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$ $\begin{aligned} \text { Required area } & =\int_{0}^{\frac{4 a}{m^{2}}}(2 \sqrt{a} \sqrt{x}-m x) d x \\ & =\int_{0}^{\frac{4 a}{m^{2}}}\left(2 \sqrt{a} \cdot \frac{2}{3} x^{\frac{3}{2}}-\frac{m x^{2}}{2}\right) d x \\ & =\left[\frac{4 \sqrt{a}}{3}\left(\frac{4 a}{m^{2}}\right)^{\frac{3}{2}}-\frac{m}{2}\left(\frac{4 a}{m^{2}}\right)^{2}\right]-[0] \\ & =\frac{4 \sqrt{a}}{3} \cdot\left(\frac{8 a \sqrt{a}}{m^{3}}\right)-\frac{m}{2}\left(\frac{16 a^{2}}{m^{4}}\right) \end{aligned}$ |

\hline
\end{tabular}

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

StudiesToday om

	$\begin{aligned} & \qquad=\frac{32 a^{2}}{3 m^{3}}-\frac{8 a^{2}}{m^{3}} \\ & =\frac{8 a^{2}}{m^{3}} \end{aligned} \quad \therefore \text { Required area } \frac{8 a^{2}}{m^{3}} \text { square units. ans. }$
Q.3)	Find the area bounded by curve $y^{2}=4 a^{2}(x-1)$ and lines $x=1$ and $y=4 a$.
Sol.3) 1)	$x=1$ (.) line parallel to y-axis at $(1,0)$ $y \uparrow x=1 \quad(5,4 a)$
2)	$y=4 a$ (.) line parallel to x-axis at $(0,4 a)$ $y=4 a$ (1, 4a)
3)	$y^{2}=4 a^{2}(x-1)$ (.) shifting parabola (.) vertex $(1,0)$ (.) open towards + ve x-axis Intersection Points: Solving $y^{2}=4 a^{2}(x-1)$ and $y=4 a$ We have $16 a^{2}=4 a^{2}(x-1)$ $4=x-1 \Rightarrow x=5 \quad \therefore \text { point }(5,4 a)$ Required area $=\int_{1}^{5}(4 a-2 a \sqrt{x-1}) d x$ $=\left[4 a x-2 a \cdot \frac{2}{3}(x-1)^{\frac{3}{2}}\right]_{1}^{5}$ $=\left[20 a-\frac{4 a}{3}(4)^{\frac{3}{2}}\right]-[4 a-0]$ $=20 a-\frac{32 a}{3}-4 a$ $=16 a-\frac{33 a}{3}$ $=\frac{16 a}{3}$ \therefore Required area $=\frac{16 a}{3}$ sq. units. ans.
Q.4)	Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and y-axis.
Sol.4) 1)	$x^{2}=4 y$ (.) parabola (.) vertex $(0,0)$ (.) open towards +ve y-axis
2)	$y=2$ (.) line parallel to x-axis at $(0,2)$
3)	$y=4$ (.) line parallel to y-axis at $(0,4)$
4)	$y \text {-axis }$ Intersection points: Solving $x^{2}=4 y$ and $y=4$ we have $(4,4)$ Solving $x^{2}=4 y$ and $y=2$ we have $(2 \sqrt{2}, 2)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

StudiesToday

com

	$\begin{aligned} \begin{aligned} \text { Required area } & =\int_{0}^{2 \sqrt{2}}(4-2) d x+\int_{2 \sqrt{2}}^{4}\left(4-\frac{x^{2}}{4}\right) d x \\ & =(2 x)_{0}^{2 \sqrt{2}}+\left(4 x-\frac{x^{3}}{12}\right)_{2 \sqrt{2}}^{4} \\ & =4 \sqrt{2}+\left[16-\frac{64}{12}\right]-\left[8 \sqrt{2}-\frac{16 \sqrt{2}}{12}\right] \\ & =4 \sqrt{2}+\frac{128}{12}-\frac{80 \sqrt{2}}{12} \\ & =\frac{128-32 \sqrt{2}}{12} \\ & =\frac{32-8 \sqrt{2}}{3} \end{aligned} \\ \therefore \text { Required area }=\frac{32-8 \sqrt{2}}{3} \text { sq. units } \end{aligned}$
Q.5)	Find the area of the region bounded by curves $y=x^{2}+2, y=x, x=0$ and $x=3$.
Sol.5) 1)	$y=x^{2}+2 \Rightarrow x^{2}=y-2$ (.) shifting (.) vertex $(0,2)$ (.) open towards +ve y-axis
2)	$y=x$ (.) line passing through $(0,0)$
3)	(.) y-axis
4)	(.) line parallel to y-axis at $(3,0)$ Intersection point: Solving $y=x^{2}+2$ and $x=3$ We have $x=3 \& y=1$ $\therefore(3,1)$ Required area $=\int_{0}^{3}\left(x^{2}+2-x\right) d x$ $\begin{aligned} & =\left(\frac{x^{3}}{3}+2 x-\frac{x^{2}}{2}\right)_{0}^{3} \\ & =\left(9+6-\frac{9}{2}\right)-0 \\ & =\frac{21}{2} \end{aligned}$ \therefore Required area $=\frac{21}{2}$ square unit. ans.
Q.6)	Find the area of the region $0 \leq y \leq x^{2}+1 ; 0 \leq y \leq x+1 ; 0 \leq x \leq 2$
Sol.6) 1)	$y \geq 0 \quad$ y
2)	$y \leq x^{2}+1 \quad \Rightarrow x^{2} \geq y-1$ (.) shifting parabola (.) vertex $(0,1)$ (.) open towards + ve y-axis (.) solution outside the parabola
3)	$y \leq x+1$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday om

4)	(.) line passing through $(0,1) \&(-1,0)$ (.) solution towards the origin $\begin{aligned} & x \geq 0 \\ & x \leq 2 \end{aligned}$ (.) line parallel to y-axis at $(2,0)$ (.) solution towards the origin $x \geq 0 \& y \geq 0$ means solution in $1^{\text {st }}$ quadrant. Intersection points Solving $y=x^{2}+1$ and $y=x+1$ We have $(0,1)$ and $(1,2)$ $\begin{aligned} \text { Required area } & =\int_{0}^{1}\left(x^{2}+1\right) d x+\int_{1}^{2}(x+1) d x \\ & =\left(\frac{x^{3}}{3}+x\right)_{0}^{1}+\left(\frac{x^{2}}{2}+x\right)^{2} \\ & =\left[\frac{1}{3}+1\right]+\left[(2+2)-\left(\frac{1}{2}+1\right)\right] \\ & =\frac{4}{3}+4-\frac{3}{2} \\ & =\frac{8+24-9}{6}=\frac{23}{6} \end{aligned}$ \therefore Required area $=\frac{23}{6}$ square units ans.
Q.7)	Find the area bounded by the curves $y=\|x\|, x$-axis, $x=-1$ and $x=1$.
Sol.7) 1)	$y=x\|x\| \longrightarrow$ two parabolas (.) $y=x^{2} ; x \geq 0$ vertex $(0,0)$ open towards + ve y-axis (.) $y=-x^{2} ; x<0$ Vertex $(0,0)$ open towards - ve y-axis x-axis $x=1 \longrightarrow$ line parallel to y-axis at $(1,0)$ $x=-1 \longrightarrow$ line parallel to y-axis at $(-1,0)$ Required area $=\int_{-1}^{0}-(-x)^{2} d x+\int_{0}^{1} x^{2} d x$ $=\left(\frac{x^{3}}{3}\right)_{-1}^{0}+\left(\frac{x^{3}}{3}\right)_{0}^{1}$ $=\left(0-\left(-\frac{1}{3}\right)\right)+\left(\frac{1}{3}-0\right)$ $=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ \therefore Required area $=\frac{2}{3}$ sq. units ans.
Q.8)	The area between $x=y^{2}$ and $x=4$ is divided in to two equal parts by line $x=a$. Find value of a.
Sol.8) 1) 2) 3)	$y^{2}=x$ (.) parabola, vertex $(0,0)$ open towards + ve x-axis $x=4$ (.) line parallel to y-axis at $(4,0)$ $x=a$ (.) line parallel to y-axis at $(a, 0)$ Area of region A:

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

StudiesToday om

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

StudiesToday

\begin{tabular}{|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& =\frac{32}{3}-\frac{16}{3} \\
\& =\frac{16}{3} \text { sq. units }
\end{aligned}
\] \\
Area of region C
\[
\begin{aligned}
\& =\int_{0}^{4}\left(\frac{x^{2}}{4}-0\right) d x \\
\& =\left(\frac{x^{3}}{12}\right)_{0}^{4} \\
\& =\frac{64}{12}=\frac{16}{3} \text { sq. units }
\end{aligned}
\] \\
Clearly, the parabolas divide the area of the square in to three equal parts.
\end{tabular} \\
\hline Q.10) \& Find the area of the region \(\left\{(x, y)\right.\) : \(\left.x^{2} \leq y \leq|x|\right\}\) \\
\hline Sol.10) 1)

2) \& | $x^{2} \leq y$ |
| :--- |
| (.) parabola |
| (.) vertex $(0,0)$ |
| (.) open towards +ve y-axis $x^{2}=1$ |
| (.) solution inside the parabola $y \leq\|x\|$ |
| (.) $y \leq x$; $x \geq 0$ [line passes through (0,0)] |
| (.) $y \leq-x ; x<0$ [line passes through $(0,0)$] $\begin{aligned} \text { Required area } & =2 \int_{0}^{1}\left(x-x^{2}\right) d x \quad \text {........ }\{\text { due to symmetry }\} \\ & =2\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)^{1} \\ & =2\left(\frac{1}{2}-\frac{1}{3}\right) \\ & =2\left(\frac{1}{6}\right)=\frac{1}{3} \text { sq. units ans. } \end{aligned}$ |

\hline
\end{tabular} reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

