

APPLICATION OF INTEGRALS Class 12th

4)	(.) line passing through $(0,1)$ & $(-1,0)$ (.) solution towards the origin
5)	$x \ge 0$
	$x \leq 2$
	(.) line parallel to y -axis at $(2,0)$
	(.) solution towards the origin
	$x \ge 0 \& y \ge 0$ means solution in 1 st quadrant.
	Intersection points
	Solving $y = x^2 + 1$ and $y = x + 1$
	We have (0,1) and (1,2)
	Required area = $\int_0^1 (x^2 + 1) dx + \int_1^2 (x + 1) dx$
	$= \left(\frac{x^3}{3} + x\right)_0^1 + \left(\frac{x^2}{2} + x\right)_1^2$
	$ = \left[\frac{1}{3} + 1\right] + \left[(2+2) - \left(\frac{1}{2} + 1\right)\right] $
	$= \frac{\frac{4}{3} + 4 - \frac{3}{2}}{\frac{8+24-9}{6}} = \frac{23}{6}$
	$=\frac{8+24-9}{6}=\frac{23}{6}$
	$\therefore \text{ Required area} = \frac{23}{6} \text{ square units} \text{ans.}$
Q.7)	Find the area bounded by the curves $y = x $, x -axis, $x = -1$ and $x = 1$.
Sol.7) 1)	$y = x x \longrightarrow $ two parabolas
	$(.) y = x^2 ; x \ge 0$
	vertex (0,0) open towards +ve y-axis
	$(.) y = -x^2 ; x < 0$
	Vertex $(0,0)$ open towards – $ve\ y$ -axis
2)	x-axis
3)	$x = 1$ \longrightarrow line parallel to y-axis at $(1,0)$
4)	x = -1 line parallel to y-axis at $(-1,0)$
	Required area = $\int_{-1}^{0} -(-x)^2 dx + \int_{0}^{1} x^2 dx$
	= 1
	$=\left(\frac{x^3}{3}\right)_{-1}^0 + \left(\frac{x^3}{3}\right)_{0}^1$
	$= \left(0 - \left(-\frac{1}{3}\right)\right) + \left(\frac{1}{3} - 0\right)$
	$\begin{pmatrix} \begin{pmatrix} 3/1 & 3/1 \\ 1 & 1 & 2 \end{pmatrix} \end{pmatrix}$
	$= \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$ $y = x^2 / \checkmark$ $y' = x^2 / \checkmark$
	\therefore Required area = $\frac{2}{3}$ sq. units ans.
Q.8)	The area between $x = y^2$ and $x = 4$ is divided in to two equal parts by line $x = a$. Find
' '	value of a .
Sol.8) 1)	$y^2 = x$
	(.) parabola, vertex (0,0) $y^2 = x$
	open towards + $ve x$ -axis $x=0$ (4,16)
2)	x = 4
	(.) line parallel to y-axis at $(4,0)$
3)	x = a
	(.) line parallel to y -axis at $(a,0)$
	Area of region A:

	Studies roudy.com
	$= 2 \int_0^a (\sqrt{x} - 0) dx \qquad \{ \text{due to symmetry} \}$
	$=2.\frac{2}{3}\left(x^{\frac{3}{2}}\right)_{0}^{a}$
	$= \frac{4}{3} a \sqrt{a} \text{ sq. units}$
	Area of region B:
	$= 2 \int_0^4 (\sqrt{x} - 0) dx \qquad \qquad \dots \{\text{due to symmetry}\}$
	$=2.\frac{2}{3}\left(x^{\frac{3}{2}}\right)_{a}^{4}$
	$=\frac{4}{3}[8-a^{\frac{3}{2}}]$ sq. units
	We are given that, area of region A = area of region B
	$\Rightarrow \frac{4}{3}a\sqrt{a} = \frac{4}{3}\left(8 - a^{\frac{3}{2}}\right)$
	$\Rightarrow a^{\frac{3}{2}} = 8 - a^{\frac{3}{2}}$
	$\Rightarrow 2a^{\frac{3}{2}} = 8$
	$\Rightarrow a^{\frac{3}{2}} = 4$
	$\Rightarrow a = 4^{\frac{2}{3}}$ ans.
Q.9)	Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by lines
	x = 0, y = 4, x = 0 and $x = 4$ in to three equal parts.
Sol.9) 1)	$y^2 = 4x$
2)	(.) parabola, vertex $(0,0)$, open towards $+ve x$ -axis
2)	$x^2 = 4y$ (.) parabola, vertex (0,0), open towards +ve y-axis
3)	x = 0
	(.) y-axis $x^2 = 4y$ $x = 4$
4)	x = 4
5)	(.) live parallel to y-axis at (4,0) $y = 0$ $R(0,4)$ $R(0,4)$ $Y = 0$
3)	(.) equation of x-axis
6)	y = 4
	(.) line parallel to x-axis at (0,4) \times
	Area of region A $= \int_0^4 (4 - 2\sqrt{x}) dx$
	$-J_0 \left(1 - 2\sqrt{x}\right) dx$ $v^2 = 4x$
	$= \left(4x - \frac{4}{3}x^{\frac{3}{2}}\right)_{0}^{4}$
	$=\left(16-\frac{4}{3}(8)\right)-(0)$
	$= \frac{16}{3} \text{ sq. units}$
	Area of region B:
	$= \int_0^4 \left(2\sqrt{x} - \frac{x^2}{4}\right) dx$
	$= \left(\frac{4}{3}x^{\frac{3}{2}} - \frac{x^3}{12}\right)_0^4$
	$=\left(\frac{4}{3}(8)-\frac{64}{12}\right)-0$

	$= \frac{32}{3} - \frac{16}{3}$ $= \frac{16}{3} \text{ sq. units}$
	Area of region C
	$= \int_0^4 \left(\frac{x^2}{4} - 0\right) dx$
	$= \left(\frac{x^3}{12}\right)_0^4$
	$=\frac{64}{12}=\frac{16}{3}$ sq. units
	Clearly, the parabolas divide the area of the square in to three equal parts.
Q.10)	Find the area of the region $\{(x, y): x^2 \le y \le x \}$
Sol.10) 1)	$x^2 \le y$
	(.) parabola
	(.) vertex (0,0)
	(.) open towards $+ve$ y -axis $x^2 = 1$ (.) solution inside the parabola
2)	$y \le x $
-1	(x) $y \le x$; $x \ge 0$ [line passes through $(0,0)$]
	(.) $y \le -x$; $x < 0$ [line passes through (0,0)]
	Required area = $2 \int_0^1 (x - x^2) dx$ {due to symmetry}
	$=2\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)_{0}^{1}$
	$=2\left(\frac{1}{2}-\frac{1}{3}\right)$
	$=2\left(\frac{1}{6}\right)=\frac{1}{3}$ sq. units ans.